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Lecture 1

Separability and
Entanglement: The Basics

Quantum entanglement is one of the key resources in quantum information
theory, being a necessary resource in almost all quantum information pro-
cessing tasks. The question arises, however, how we can be sure that the
state of our quantum system is actually entangled. The goal of this module
is to investigate this question.

Specifically, we will investigate methods for proving that a state is en-
tangled in the setting where we have a complete (classical) description of
the state of our system (e.g., the state that we wish to determine is entan-
gled was arrived at via a calculation, not an experiment... alternatively, we
are fortunate enough that we can perform full state tomography and learn
everything about the state of our system).

References to specific results will occasionally be provided within the
course notes, especially when we don’t actually prove or delve too deeply
into the results ourselves. Two general references that might be of use to
you throughout this module are:

• O. Gühne and G. Tóth. Entanglement detection. Physics Reports,
474:1–75, 2009. arXiv:0811.2803 [quant-ph]

• R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quan-
tum entanglement. Reviews of Modern Physics, 81:865–942, 2009.
arXiv:quant-ph/0702225
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1.1 Pure State Entanglement
A pure state |v〉 ∈ Cn ⊗ Cm is called separable (or sometimes a product
state) if it can be written in the form |v〉 = |a〉 ⊗ |b〉 for some |a〉 ∈ Cn and
|b〉 ∈ Cm. Otherwise, |v〉 is called entangled.

The Schmidt decomposition theorem provides a simple method for deter-
mining whether a pure state is separable or entangled (and if it is entangled,
the theorem lets us see “how” entangled it is).

Theorem 1.1.1 (Schmidt decomposition). For any unit vector |v〉 ∈ Cn⊗
Cm there exists an integer 1 ≤ r ≤ min{n,m}, strictly positive real scalars
{γi}ri=1 with ∑r

i=1 γ
2
i = 1, and orthonormal sets of vectors {|ai〉}ri=1 ⊂ Cn

and {|bi〉}ri=1 ⊂ Cm such that

|v〉 =
r∑
i=1

γi|ai〉 ⊗ |bi〉.

Before proving the theorem, we offer some notes on terminology:

• The integer r is called the Schmidt rank of |v〉, and r = 1 if and only
if |v〉 is separable.

• The scalars {γi}ri=1 are called the Schmidt coefficients of |v〉, and they
are the nonzero square roots of the eigenvalues of TrA(|v〉〈v|).

• Every piece of Theorem 1.1.1 is easily computed.

Proof. Assume that n ≤ m, as it will be clear how to modify the proof if the
opposite inequality holds. Begin by defining a linear map Γ : Cn ⊗ Cm →
Mn,m by Γ(|ij〉) = |i〉〈j|. This map is easily seen to be a bijection between
these two spaces.

By the singular value decomposition, there exist unitary matrices U ∈
Mn, V ∈ Mm, and a diagonal matrix D ∈ Mn,m with nonnegative entries
such that

Γ(|v〉) = UDV.

Performing this matrix multiplication gives

Γ(|v〉) =
r∑
i=1

γi|ai〉〈bi|,
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where r is the rank of Γ(|v〉), γi is the i-th nonzero diagonal entry of D, |ai〉
is the i-th column of U , and 〈bi| is the i-th row of V . Since U and V are
both unitary, the sets {|ai〉}ri=1 and {|bi〉}ri=1 are orthonormal. Furthermore,
a simple calculation reveals that

Γ
( r∑
i=1

γi|ai〉 ⊗ |bi〉
)

=
r∑
i=1

γi|ai〉〈bi| = Γ(|v〉).

It follows from the fact that Γ is a bijection that

|v〉 =
r∑
i=1

γi|ai〉 ⊗ |bi〉,

as desired. To see that∑r
i=1 γ

2
i = 1, simply notice that 1 = ‖|v〉‖2 = 〈v|v〉 =∑r

i=1 γ
2
i .

The proof of Theorem 1.1.1 tells us how to determine whether or not
|v〉 is separable: it is separable if and only if the matrix Γ(|v〉) has rank 1.
For example, if |v〉 = |00〉 ∈ C2 ⊗ C2 (which is clearly separable) then we
have

Γ(|v〉) =
[
1 0
0 0

]
,

which has rank 1. On the other hand, if |v〉 = 1√
2(|00〉+ |11〉) ∈ C2 ⊗C2 is

a Bell state then

Γ(|v〉) = 1√
2

[
1 0
0 1

]
,

which has rank 2, so |v〉 is entangled.

1.2 Mixed State Entanglement
In the case of mixed states, we say that ρ ∈Mn ⊗Mm is separable if it can
be written as a convex combination of separable pure states:

ρ =
k∑
i=1

pi|vi〉〈vi|, (1.1)
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where |vi〉 = |ai〉 ⊗ |bi〉 for all i, 0 ≤ pi ≤ 1 for all i, and ∑
i pi = 1. If

ρ cannot be written in the form (1.1) then it is called entangled. We note
that the set of separable states is both closed and convex.

In the previous section we saw that we can easily determine whether
or not a given pure state is entangled. However, the same is not true of
mixed states: determining whether or not a given mixed state ρ is separable
is NP-hard [Gur03], so we don’t expect that we’ll be able to efficiently
solve this problem in complete generality. Instead, we try to find one-
sided tests (called separability criteria) that are able to prove separability
or entanglement for certain subsets of states.

1.2.1 The Partial Transpose
The most well-known separability criterion is based on the partial transpose
map, which applies the usual matrix transpose to one half of the space
Mn⊗Mm. That is, the partial transpose is the linear map id⊗ T that acts
on Mn ⊗Mm as follows: (id⊗ T )(A⊗B) = A⊗BT .

The following proposition shows that the partial transpose can be used
to detect entanglement in some quantum states.

Proposition 1.2.1 (Positive partial transpose (PPT) criterion). Let ρ ∈
Mn ⊗Mm be separable. Then (id⊗ T )(ρ) is positive semidefinite.

Proof. Since ρ is separable, we can write ρ = ∑
i pi|ai〉〈ai| ⊗ |bi〉〈bi|. Then

(id⊗ T )(ρ) =
∑
i

pi|ai〉〈ai| ⊗ (|bi〉〈bi|)T ,

which is positive semidefinite as a result of each |ai〉〈ai| and (|bi〉〈bi|)T being
positive semidefinite.

Note that the contrapositive of Proposition 1.2.1 is what is used in
practice: if (id ⊗ T )(ρ) is not positive semidefinite then we can conclude
that ρ is entangled. For example, if

ρ = 1
4


2 0 0 1
0 0 0 0
0 0 0 0
1 0 0 2

 ∈M2 ⊗M2
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then we can compute

(id⊗ T )(ρ) = 1
4


2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 2

 ,
which has eigenvalues 1

2 ,
1
2 ,

1
4 , and

−1
4 and is thus not positive semidefinite.

It follows from Proposition 1.2.1 that ρ is entangled.
However, if (id⊗T )(ρ) is positive semidefinite (in which case ρ is said to

have positive partial transpose (PPT)) then what can we say about whether
ρ is separable or entangled? In general, nothing. However, in some special
cases...

Theorem 1.2.2. Let ρ ∈ Mn ⊗Mm with nm ≤ 6. Then ρ is separable if
and only if (id⊗ T )(ρ) is positive semidefinite.

In other words, the converse of Proposition 1.2.1 holds in small dimen-
sions. The proof of Theorem 1.2.2 is extremely technical [Stø63, Wor76], so
we will just treat it as a magical gift from operator theorists.

1.2.2 Positive Maps and Entanglement Witnesses
Recall that quantum channels are represented by linear maps Φ : Mm →Mn

that are completely positive: i.e., they satisfy (idk ⊗Φ)(ρ) ≥ 0 for all k ≥ 1
and all ρ ∈Mk ⊗Mm. Also recall that Φ is completely positive if and only
if its Choi matrix, defined by

J(Φ) def= m(id⊗ Φ)(|ψ+〉〈ψ+|), where |ψ+〉 := 1√
m

m−1∑
i=0
|i〉 ⊗ |i〉,

is positive semidefinite. In this section, we won’t be interested in completely
positive maps, but rather maps that are just positive. That is, maps Φ :
Mm →Mn with the property that Φ(ρ) ≥ 0 for all ρ ∈Mm.

We have already seen one linear map that is positive but not completely
positive: the transpose map T : Mm →Mm. To see that it is positive, just
recall that the eigenvalues of XT are the same as the eigenvalues of X. To
see that it is not completely positive, notice that its Choi matrix is

J(T ) = (id⊗ T )
( m−1∑
i,j=0
|i〉〈j| ⊗ |i〉〈j|

)
=

m−1∑
i,j=0
|i〉〈j| ⊗ |j〉〈i|.
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It is then straightforward to verify that the operator J(T ) is unitary (i.e.,
J(T )†J(T ) = I) and Hermitian, so all of its eigenvalues are ±1. Since it
is not the identity operator, it must have at least 1 negative eigenvalue, so
J(Φ) is not positive semidefinite and the transpose map is not completely
positive.

It seems natural to ask what properties the Choi matrix of a positive
map must have. This question is answered by the following proposition.

Proposition 1.2.3. A linear map Φ : Mm → Mn is positive if and only if
Tr(J(Φ)σ) ≥ 0 for all separable σ ∈Mm ⊗Mn.

Proof. To prove the “only if” direction, first notice that we can use convexity
of the set of separable states to see that it suffices to consider the case when
σ = |a〉〈a| ⊗ |b〉〈b|. Then we have:

Tr
(
J(Φ)(|a〉〈a| ⊗ |b〉〈b|)

)
= (〈a| ⊗ 〈b|)J(Φ)(|a〉 ⊗ |b〉)

=
m−1∑
i,j=0

(〈a| ⊗ 〈b|)
(
|i〉〈j| ⊗ Φ(|i〉〈j|)

)
(|a〉 ⊗ |b〉)

= 〈b|Φ
( m−1∑
i,j=0
〈a|i〉|i〉〈j|a〉〈j|

)
|b〉

= 〈b|Φ
(
|a〉〈a|

)
|b〉

≥ 0.

The “if” direction can be proved by using the exact same argument as above
in reverse.

The Choi matrices of positive maps are actually given a special name—if
a Hermitian operator W ∈Mm⊗Mn satisfies Tr(Wσ) ≥ 0 for all separable
σ ∈ Mm ⊗Mn but has Tr(Wρ) < 0 for some (necessarily entangled) ρ ∈
Mm⊗Mn then W is called an entanglement witness. By Proposition 1.2.3,
a linear map is positive but not completely positive if and only if its Choi
matrix is an entanglement witness. The reason for our interest in positive
maps and entanglement witnesses is the following theorem.

Theorem 1.2.4. Let ρ ∈Mm ⊗Mn. The following are equivalent:

a) ρ is separable;

b) Tr(Wρ) ≥ 0 for all entanglement witnesses W ∈Mm ⊗Mn; and
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c) (id⊗ Φ)(ρ) ≥ 0 for all positive linear maps Φ : Mn →Mm.

Proof. The implication a) =⇒ c) is straightforward and follows the exact
same logic that we saw with the partial transpose map: if ρ is separable
then we can write

ρ =
∑
i

pi|ai〉〈ai| ⊗ |bi〉〈bi|.

Then

(id⊗ Φ)(ρ) =
∑
i

pi|ai〉〈ai| ⊗ Φ(|bi〉〈bi|) ≥ 0,

where positive semidefiniteness follows from the fact that Φ is positive so
Φ(|bi〉〈bi|) ≥ 0 for all i.

To see that c) =⇒ b), notice that (id⊗ Φ)(ρ) ≥ 0 implies

0 ≤ 〈ψ+|(id⊗ Φ)(ρ)|ψ+〉
= Tr

(
|ψ+〉〈ψ+|(id⊗ Φ)(ρ)

)
= Tr

(
(id⊗ Φ†)(|ψ+〉〈ψ+|)ρ

)
.

Now defineW := (id⊗Φ†)(|ψ+〉〈ψ+|) and notice that we have Tr(Wρ) ≥ 0.
Since Φ is positive, Φ† is positive too (prove this yourself), so Proposi-
tion 1.2.3 implies that W is an entanglement witness. Furthermore, every
entanglement witness has this form for some positive Φ, so b) follows.

Finally, to see that b) =⇒ a), we prove the contrapositive that ρ being
entangled implies that there exists an entanglement witness W such that
Tr(Wρ) < 0. To this end recall that the set of separable states is closed
and convex. By the separating hyperplane theorem, if ρ is entangled then
there exists a Hermitian operator H ∈Mm⊗Mn and a constant c ∈ R such
that Tr(Hρ) < c, but Tr(Hσ) ≥ c for all separable σ. It is straightforward
to verify that W := H − cI is an entanglement witness, as desired.

On the one hand, positive maps can be used to completely characterize
entanglement, as seen above. On the other hand, we only know a handful
of positive maps, and determining whether or not a linear map is positive
is also NP-hard. For now, let’s expand our arsenal of positive maps a little
bit.
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The Reduction Map

One of the most well-known positive maps other than the transpose map is
the reduction map, which is the positive linear map R : Mn → Mn defined
by

R(X) def= Tr(X)I −X.

We now show that the reduction map can be used to detect entanglement
in some states.

Proposition 1.2.5. If n ≥ 2 then the reduction map R : Mn → Mn is
positive but not completely positive.

Proof. To see that R is positive, suppose that X ≥ 0. If we use {λi}ni=1 to
denote the eigenvalues of X, then the eigenvalues of R(X) = Tr(X)I −X
are {Tr(X) − λi}ni=1. Since Tr(X) = ∑n

j=1 λj ≥ λi for all 1 ≤ i ≤ n, it
follows that R(X) ≥ 0, as desired.

Try to prove that R is not completely positive yourself (what is J(R)?).

In spite of Proposition 1.2.5, the reduction map is not actually used
in practice to prove that states are entangled, since it turns out that the
transpose map is always a better choice (i.e., every time that the reduction
map detects entanglement in a state, so does the transpose map). You will
prove this fact in Exercise 1. Nonetheless, the reduction map has some
interesting theoretical properties.

The Choi Map

Note that it was very easy to prove that the reduction map is positive (and
it is also very easy to prove that the transpose map is positive). We now
investigate another positive map to give you a more “realistic” view of what
it is typically like to prove that a given map is positive.

We now introduce the Choi map, which is the positive map ΦC : M3 →
M3 defined as follows:

ΦC(X) def=

x11 + x22 −x12 −x13
−x21 x22 + x33 −x23
−x31 −x32 x33 + x11

 .
Notice that ΦC is quite similar to the reduction map on 3×3 matrices—

all that has changed is that the diagonal entries are permuted.
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Theorem 1.2.6. The Choi map ΦC : M3⊗M3 is positive but not completely
positive.

Proof. You can check that it is not completely positive yourself by comput-
ing J(ΦC). We focus only on proving that it is positive.

By convexity of the set of positive-semidefinite matrices, it suffices to
show that ΦC(|v〉〈v|) ≥ 0 for all pure states |v〉 ∈ C3. If we write |v〉 =
[v1, v2, v3]T then what we want to show is that

ΦC(|v〉〈v|) =

|v1|2 + |v2|2 −v1v2 −v1v3
−v1v2 |v2|2 + |v3|2 −v2v3
−v1v3 −v2v3 |v3|2 + |v1|2

 ≥ 0. (1.2)

Recall that we can prove that the matrix (1.2) is positive semidefinite (and
hence ΦC is positive) by checking that all of its principal minors are non-
negative (recall that a principal minor of a matrix X is the determinant of
a matrix obtained by deleting some k rows and the same k columns from
X). This is basically just grunt work, but maybe it helps us dig up some
long-forgotten linear algebra, so let’s do it:

There are three 1× 1 principal minors of ΦC(|v〉〈v|):

|v1|2 + |v2|2, |v2|2 + |v3|2, and |v3|2 + |v1|2,

which are clearly nonnegative.
There are three 2× 2 principal minors of ΦC(|v〉〈v|):

det
([
|v1|2 + |v2|2 −v1v2
−v1v2 |v2|2 + |v3|2

])
= (|v1|2 + |v2|2)(|v2|2 + |v3|2)− |v1|2|v2|2

= |v1|2|v3|2 + |v2|4 + |v2|2|v3|2

≥ 0.

The calculation for the other two 2× 2 principal minors is almost identical
and is thus omitted.

Finally, there is just one 3× 3 principal minor of ΦC(|v〉〈v|):

det
(
ΦC(|v〉〈v|)

)
= (|v1|2 + |v2|2)(|v2|2 + |v3|2)(|v3|2 + |v1|2)− 2|v1|2|v2|2|v3|2

− (|v1|2 + |v2|2)|v2|2|v3|2 − (|v2|2 + |v3|2)|v1|2|v3|2

− (|v3|2 + |v1|2)|v1|2|v2|2

= |v1|2|v2|4 + |v2|2|v3|4 + |v3|2|v1|4 − 3|v1|2|v2|2|v3|2.
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In order to show that this quantity is nonnegative, we define x :=
|v1|2, y := |v2|2, and z := |v3|2, and solve the following optimization prob-
lem:

minimize: xy2 + yz2 + zx2 − 3xyz
subject to: x, y, z ≥ 0

x+ y + z = 1.

This is a standard optimization problem that could be solved in a multi-
variable calculus course. Since the optimization takes place over a closed
and bounded set, it suffices to (1) plug the constraint x + y + z = 1 into
the objective function to eliminate one of the variables, (2) check the value
of the objective function on the boundary of that set being optimized over,
and (3) check the value of the objective function at its critical points.

All of this is just a (messy and somewhat long) calculation—you can do
it if you so desire, or you can take my word for it that the minimum value
really is 0, which shows that ΦC is positive. Alternatively, if you don’t trust
me you can take WolframAlpha’s word for it.

Exercises
Exercise 1. Let R : Mn → Mn be the reduction map introduced in Sec-
tion 1.2.2 and let ρ ∈Mn ⊗Mn be a mixed state.

a) Prove that if (idn ⊗ R)(ρ) 6≥ 0 then (idn ⊗ T )(ρ) 6≥ 0. That is, show
that the transpose map can detect entanglement in every state ρ that
the reduction map can. [Hint: Show that the map R◦T is completely
positive.]

b) Prove that, in the n = 2 case, (id2 ⊗ R)(ρ) 6≥ 0 if and only if (id2 ⊗
T )(ρ) 6≥ 0. [Hint: Show that the map R ◦ T is its own inverse when
n = 2.]

http://www.wolframalpha.com/input/?i=minimize+x*y%5E2%2By*z%5E2%2Bz*x%5E2-3*x*y*z+subject+to+x%3E%3D0+and+y%3E%3D0+and+z%3E%3D0+and+x%2By%2Bz%3D1


Lecture 2

Creating PPT Entangled
States

We saw in the previous lecture that the partial transpose provides one of
the simplest and most useful tests for proving that a state is entangled.
However, in systems larger than M2⊗M3, this test is only one-sided: if the
partial transpose of a state has a negative eigenvalue then we know that
it is entangled, but if it has positive partial transpose then it may or may
not be entangled. In this lecture we present one method for creating states
that are entangled yet have positive partial transpose. In future lectures,
we will develop tests that let us detect the entanglement in these states.

2.1 Multipartite Entanglement
In Lecture 1, we discussed the problem of determining whether or not a
given quantum state is separable in the bipartite case (i.e., the case of two
subsystems). This question can also be asked in the multipartite setting
(i.e., the case of an arbitrary (but finite) number of subsystems), and all
of the definitions extend in the obvious ways. In particular, a pure state
|v〉 ∈ Cn1⊗Cn2⊗· · ·⊗Cnp is separable if and only if there exists |vj〉 ∈ Cnj

for 1 ≤ j ≤ p such that

|v〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vp〉.

11
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Similarly, a mixed state ρ ∈Mn1 ⊗Mn2 ⊗· · ·⊗Mnp is separable if and only
if we can write

ρ =
k∑
i=1

pi|vi〉〈vi|

for some separable pure states {|vi〉} ⊂ Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnp .
However, even though the relevant definitions carry over to the multi-

partite setting without much thought, we will see in this lecture that it is
not always straightforward to use bipartite separability criteria to determine
multipartite separability.

2.2 Unextendible Product Bases
One method for creating PPT entangled states (and also demonstrating
plenty of other strange entanglement phenomena) is by using unextendible
product bases (UPBs), which are sets U = {|v1〉, |v2〉, . . . , |vs〉} ⊂ Cn1 ⊗
Cn2 ⊗ · · · ⊗ Cnp of product vectors satisfying the following two properties:

a) 〈vi|vj〉 = 0 for all 1 ≤ i 6= j ≤ s, and

b) there does not exist a product vector |z〉 ∈ Cn1⊗Cn2⊗· · ·⊗Cnp such
that 〈vi|z〉 = 0 for all 1 ≤ i ≤ s.

It is clear that the standard basis of Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnp satisfies all
of the requirements above and is thus a UPB. However, UPBs that span
the entire space Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnp will be completely useless for our
purposes, so we ignore them and instead only consider UPBs that span a
proper subspace of Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnp (we call such UPBs nontrivial).

2.2.1 Bipartite UPBs
It is perhaps not immediately clear that nontrivial UPBs even exist, so we
start off with an example of one in the bipartite case. In particular, we
define a set Utiles = {|v1〉, . . . , |v5〉} ⊂ C3⊗C3 that we refer to as the “tiles”
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UPB as follows:

|v1〉 = 1√
2
|0〉 ⊗ (|0〉 − |1〉), |v2〉 = 1√

2
|2〉 ⊗ (|1〉 − |2〉)

|v3〉 = 1√
2

(|0〉 − |1〉)⊗ |2〉, |v4〉 = 1√
2

(|1〉 − |2〉)⊗ |0〉

|v5〉 = 1
3(|0〉+ |1〉+ |2〉)⊗ (|0〉+ |1〉+ |2〉).

To see that these five states form a UPB, we check the two defining
properties given in the previous section. For property a), you can just
manually check that each state is orthogonal to every other state. For
example, |v1〉 is orthogonal to |v2〉 and |v4〉 on the first system and it is
orthogonal to |v3〉 and |v5〉 on the second system.

For property b), suppose for a contradiction that there exists a product
state |z〉 = |z1〉 ⊗ |z2〉 ∈ C3 ⊗ C3 such that 〈vi|z〉 = 0 for 1 ≤ i ≤ 5. Then
|z〉 must be orthogonal to at least 3 of the |vi〉’s on either the first or second
system (otherwise it would only be orthogonal to at most 2 states on each
system, for a total of at most 2 + 2 = 4 of the 5 states). That is, |z1〉 must
be orthogonal to at least 3 of the following states:

|0〉, |2〉, 1√
2

(|0〉 − |1〉), 1√
2

(|1〉 − |2〉), 1√
3

(|0〉+ |1〉+ |2〉), (2.1)

or |z2〉 must be orthogonal to at least 3 of the following states:

1√
2

(|0〉 − |1〉), 1√
2

(|1〉 − |2〉), |2〉, |0〉, 1√
3

(|0〉+ |1〉+ |2〉). (2.2)

However, it is a straightforward calculation to show that any three states
in (2.1) are linearly independent, and similarly for any three states in (2.2),
which implies that no |z1〉 or |z2〉 satisfies the desired property. This is the
contradiction that shows that property b) holds, so Utiles really is a UPB.

Our First PPT Entangled State

Our primary interest in UPBs comes from the following proposition, which
shows that every UPB can be used to construct a PPT entangled state.
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Proposition 2.2.1. Let U = {|v1〉, |v2〉, . . . , |vs〉} ⊂ Cn ⊗ Cm be a UPB.
Then the state

ρ := 1
nm− s

(I −
s∑
i=1
|vi〉〈vi|) (2.3)

is PPT and entangled.

Proof. It is straightforward to see that this state is PPT: if we write |vi〉 =
|v1
i 〉 ⊗ |v2

i 〉 then

(id⊗ T )(ρ) = 1
nm− s

(
I −

s∑
i=1
|v1
i 〉〈v1

i | ⊗ (|v2
i 〉〈v2

i |)T
)

= 1
nm− s

(
I −

s∑
i=1

(|v1
i 〉 ⊗ |v2

i 〉)(〈v1
i | ⊗ 〈v2

i |)
)

≥ 0,

where |v2
i 〉 refers to the complex conjugate of |v2

i 〉 (in the same basis as the
transpose was taken).

Why is the state (2.3) entangled? Suppose for a contradiction that ρ is
separable, so we can find product states {|zj〉} ⊂ Cn ⊗ Cm such that

ρ =
k∑
j=1

pj|zj〉〈zj|.

However, ρ is (up to scaling) the orthogonal projection onto the orthogonal
complement of span{U}. Thus 〈vi|zj〉 = 0 for all |vi〉 ∈ U and for all |zj〉,
which contradicts unextendibility of U .

Since we have already constructed a UPB in C3 ⊗ C3, it follows from
Proposition 2.2.1 that we can create a PPT entangled state in M3 ⊗M3.

UPBs in Qubit–Qudit Systems

We already saw that there are no nontrivial UPBs in C2 ⊗ C2 or C2 ⊗ C3

(Why? What kind of mixed state would this let you construct?). We now
show that the same result is true in C2 ⊗ Cn, regardless of n

Theorem 2.2.2. Every unextendible product basis in U ⊂ C2 ⊗ Cn spans
the full 2n-dimensional space.
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Proof. Throughout this proof we assume that the system C2 is held by
Alice and the system Cn is held by Bob. First note that, up to global phase
(which is irrelevant), there is only one pure state orthogonal to any other
given pure state in C2. We make use of this fact by sorting the members
of U into disjoint subsets that are equal and orthogonal on Alice’s system.
More specifically, we write U in the following way:

U = (P1 ∪Q1) ∪ (P2 ∪Q2) ∪ · · · ∪ (Pk ∪Qk),

where

Pj :=
{
|aj〉 ⊗ |bj1〉, |aj〉 ⊗ |bj2〉, . . . , |aj〉 ⊗ |bj`j〉

}
and

Qj :=
{
|a⊥j 〉 ⊗ |cj1〉, |a⊥j 〉 ⊗ |cj2〉, . . . , |a⊥j 〉 ⊗ |cjrj

〉
}
.

That is, we take some element of U , place it into P1, and then place in P1
all other members of U that are equal to it on Alice’s system. Then we
place in Q1 all members of U that are orthogonal to the members of P1 on
Alice’s system. Then we pick any member of U that is in neither of P1 or
Q1 and place it in P2, and repeat this process until we have exhausted all
of U .

We now claim that

span{|bj1〉, |bj2〉, . . . , |bj`j〉} = span{|cj1〉, |cj2〉, . . . , |cjrj
〉} ∀ j. (2.4)

That is, we claim that the span of Pj and Qj, when restricted to Bob’s
system, coincides for all 1 ≤ j ≤ k. To see why this claim holds, fix j and
suppose the contrary: suppose that there exists a state |v〉 ∈ Cn such that

|v〉 ∈ span{|bj1〉, . . . , |bj`j〉} and |v〉 6∈ span{|cj1〉, . . . , |cjrj
〉}

(the argument is almost identical if |v〉 is in the right set but not the left
set, so we omit it). Then we claim that the state |a⊥〉 ⊗ |v〉 is orthogonal
to every member of U , which contradicts the fact that U is unextendible.
To see this, note that |a⊥〉 ⊗ |v〉 is orthogonal to every member of Pj on
Alice’s system, it is orthogonal to every member of Qj on Bob’s system
since |v〉 6∈ span{|cj1〉, . . . , |cjrj

〉}, and it is orthogonal to every member of
P`, Q` (` 6= j) on Bob’s system since |v〉 ∈ span{|bj1〉, . . . , |bj`j〉}.

We have thus proved that Equation (2.4) holds. We now define sub-
spaces Sj := span{|bj1〉, . . . , |bj`j〉 for 1 ≤ j ≤ k and we note that these
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subspaces are mutually orthogonal. Furthermore, ∑k
j=1 dim(Sj) = n, which

can be seen by noting that otherwise we could find some state orthogonal to
every member of U on Bob’s system, which violates unextendibility. Since
each of Pj and Qj contain sets of vectors that span Sj on Bob’s system,
it follows that |U| = ∑k

j=1 |Pj| +
∑k
j=1 |Qj| ≥ 2∑k

j=1 dim(Sj) = 2n, which
completes the proof.

It follows from Theorem 2.2.2 that UPBs cannot be used to create PPT
entangled states in M2 ⊗Mn (even though PPT entangled states exist in
this space when n ≥ 4).

2.2.2 Multipartite UPBs
We now introduce our first UPB in the multipartite setting. Consider the
following set of four states in C2 ⊗ C2 ⊗ C2:

Ushifts
def=
{
|0〉|0〉|0〉, |1〉|+〉|−〉, |−〉|1〉|+〉, |+〉|−〉|1〉

}
, (2.5)

where we recall that |+〉 = 1√
2(|0〉 + |1〉) and |−〉 = 1√

2(|0〉 − |1〉). It is
straightforward to verify that the members of Ushifts are mutually orthogo-
nal, so we focus only on showing that this set is unextendible.

To see unextendibility, suppose that there were some product state |z〉 =
|z1〉⊗|z2〉⊗|z3〉 ∈ C2⊗C2⊗C2 such that 〈v|z〉 = 0 for all |v〉 ∈ Ushifts. Well,
it is the case that |z1〉 can be orthogonal to at most one of |0〉, |1〉, |+〉, or
|−〉 (and similarly for |z2〉, |z3〉). Thus |z1〉 ⊗ |z2〉 ⊗ |z3〉 can be orthogonal
to at most 1+1+1 = 3 members of Ushifts, so no product state is orthogonal
to all 4 members of Ushifts.

Even though we only explicitly proved Proposition 2.2.1 in the bipartite
case, an almost identical proof works for the general multipartite case as
well, so we conclude that the state

ρshifts := 1
4(I −

∑
|v〉∈Ushifts

|v〉〈v|)

is entangled and PPT (i.e., applying the transpose map to any subset of
the systems results in a positive semidefinite operator).
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Multipartite Separability is Funky

We can use Theorem 2.2.2 to show that the state ρshifts ∈ M2 ⊗M2 ⊗M2
is not only PPT across every bipartite cut, but it is even separable across
every bipartite cut (even though it is not separable). To see this, we show
that it is separable across the cut M2 ⊗ (M2 ⊗M2) ∼= M2 ⊗M4 and simply
note that the argument for the other cuts is almost identical.

Consider the product basis Ushifts as a subset of C2 ⊗ C4 rather than
C2 ⊗ C2 ⊗ C2 and notice that Theorem 2.2.2 says that it is extendible in
this space (even though it is not extendible in C2⊗C2⊗C2). That is, we can
find a product state |v5〉 ∈ C2 ⊗ C4 that is orthogonal to every member of
Ushifts. Similarly, since the set Ushifts∪{|v5〉} has only 5 members, we can use
Theorem 2.2.2 again to find a product state |v6〉 ∈ C2⊗C4 that is orthogonal
to |v5〉 as well as every member of Ushifts. Continuing in this way, we can also
find product states |v7〉, |v8〉 such that the set Ushifts ∪ {|v5〉, |v6〉, |v7〉, |v8〉}
is a complete orthonormal product basis of C2 ⊗ C4.

It is then straightforward to verify that

ρshifts := 1
4(I −

∑
|v〉∈Ushifts

|v〉〈v|) = 1
4

8∑
j=5
|vj〉〈vj|,

which is separable in M2 ⊗M4 since each of the |vj〉’s is a product state in
C2 ⊗ C4.

This example shows us that we cannot completely naïvely apply bipar-
tite separability criteria and hope to characterize multipartite separability—
a state can be separable across every bipartition without actually being
separable!

Exercises
Exercise 2. Let U ⊂ Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnp be an unextendible product
basis with s members. Show that

s ≥
p∑
i=1

(ni − 1) + 1.

Exercise 3. We showed in Section 2.2.2 that the state ρshifts ∈M2⊗M2⊗M2
is separable with respect to any bipartition. Find an explicit separable
decomposition of ρshifts with respect to the bipartition M2 ⊗ (M2 ⊗M2) ∼=
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M2⊗M4. That is, find separable pure states {|vi〉} ⊂ C2⊗C4 and positive
scalars {pi} such that

ρshifts =
k∑
i=1

pi|vi〉〈vi|.



Lecture 3

Detecting PPT Entangled
States: Realignment and

Local Filters

We have already seen one method for detecting the entanglement in PPT
states: the Choi map ΦC . For example, it is straightforward to check that
the following state ρ = M3 ⊗M3 is PPT:

ρ := 1
21



2 · · · 2 · · · 2
· 1 · · · · · · ·
· · 4 · · · · · ·
· · · 4 · · · · ·
2 · · · 2 · · · 2
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 4 ·
2 · · · 2 · · · 2


, (3.1)

yet (id3 ⊗ ΦC)(ρ) has −1/42 as one of its eigenvalues. Since we know that
ΦC is positive (recall Theorem 1.2.6), this implies that ρ is entangled.

However, the state above is extremely “cooked up”, and we can’t expect
the Choi map to save us like this in general. For example, the Choi map
is unable to detect the entanglement in the ρtiles state based on the “tiles”

19
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UPB (introduced in Section 2.2.1). So how can we detect entanglement in
PPT states in practice?

3.1 The Realignment Criterion
Remember the Schmidt decomposition theorem for pure states? Well, there
is an analogous theorem for mixed states (and even for arbitrary operators).

Theorem 3.1.1 (Operator Schmidt decomposition). For any matrix X ∈
Mn⊗Mm there exists an integer 1 ≤ r ≤ min{n2,m2}, strictly positive real
scalars {γi}ri=1 with ∑r

i=1 γ
2
i = 1, and orthonormal (in the Hilbert–Schmidt

inner product) sets of matrices {Ai}ri=1 ⊂Mn and {Bi}ri=1 ⊂Mm such that

X =
r∑
i=1

γiAi ⊗Bi.

Furthermore, if X is Hermitian then the matrices {Ai} and {Bi} can be
chosen to be Hermitian.

Proof. Almost identical to the proof of the Schmidt decomposition (just
reshape the matrices into vectors and then back again).

We note that this decomposition, just like the regular Schmidt decom-
position, is easy to compute in practice, and can tell us a great deal about
the entanglement of ρ. The main result of this section shows that the op-
erator Schmidt decomposition can be used to detect entanglement in some
quantum states.

Theorem 3.1.2 (Realignment criterion). Let ρ ∈Mn ⊗Mm have operator
Schmidt decomposition

ρ =
r∑
i=1

γiAi ⊗Bi.

If ∑r
i=1 γi > 1 then ρ is entangled.

Proof. We prove the result by constructing an entanglement witnessW that
detects entanglement in ρ. In particular, we define

W := I −
r∑
i=1

Ai ⊗Bi.
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We can see that Tr(Wρ) < 0 as follows:

Tr(Wρ) = Tr(ρ)− Tr(
r∑

i,j=1
γjAiAj ⊗BiBj)

= 1−
r∑

i,j=1
δi,jγj

= 1−
r∑
j=1

γj

< 0,

where we used the fact that the operators {Ai}ri=1 and {Bi}ri=1 are Hermitian
and mutually orthonormal. It follows that if W is an entanglement witness
then it detects entanglement in ρ.

To see that W is an entanglement witness, we need to show that its
inner product with separable states is nonnegative:

(〈a| ⊗ 〈b|)W (|a〉 ⊗ |b〉) = (〈a| ⊗ 〈b|)
(
I −

r∑
i=1

Ai ⊗Bi

)
(|a〉 ⊗ |b〉)

= 1−
r∑
i=1
〈a|Ai|a〉〈b|Bi|b〉.

(3.2)

Now we define two vectors a ∈ Rn and b ∈ Rm by ai := 〈a|Ai|a〉 and
bi := 〈b|Bi|b〉 (where we have extended {Ai} and {Bi} to full orthonormal
bases ofMn andMm, respectively). Since {Ai} and {Bi} form orthonormal
bases of Mn and Mm, respectively, we know that |a〉〈a| = ∑n2

i=1 aiAi and
|b〉〈b| = ∑m2

i=1 biBi. Thus

1 =
∥∥∥|a〉〈a|∥∥∥2

F
=
∥∥∥ n2∑
i=1

aiAi
∥∥∥2

F
=

n2∑
i=1
|ai|2 = ‖a‖2,

where ‖ · ‖F is the Frobenius norm (i.e., the norm induced by the Hilbert–
Schmidt inner product), and similarly for b. It follows that

r∑
i=1
〈a|Ai|a〉〈b|Bi|b〉 =

r∑
i=1

aibi ≤ ‖a‖‖b‖ = 1,

where the inequality is the Cauchy–Schwarz inequality. This shows that (3.2)
is nonnegative, which completes the proof.
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We claimed that the realignment criterion detects entanglement in some
states that the PPT criterion cannot. To see that this is the case, consider
the state ρ given by (3.1). It can be checked that this state has ∑r

i=1 γi =
1
21(19+2

√
7) > 1, so Theorem 3.1.2 detects its entanglement even though it

is PPT. Similarly, the state ρtiles has
∑r
i=1 γi ≈ 1.0874 . . ., so the realignment

criterion detects entanglement in that state as well.
Side note: The realignment criterion actually has several different forms
and goes by two different names. The term “realignment criterion” comes
from the fact that the coefficients {γi} in the operator Schmidt decompo-
sition are the singular values of a certain “realigned” matrix that results
from shifting the entries of ρ around in the standard basis. Thus, comput-
ing ∑i γi is the same as computing the trace norm of this realigned matrix.
This separability criterion is also sometimes called the computable cross
norm (CCN) criterion. The reason for these different formulations of the
same criterion is simply that it was introduced independently at the same
time by different authors in two very different settings [CW03, Rud03].

3.2 Local Filters
We now introduce a general method for “boosting” the effectiveness of a
separability criterion. The idea is to let F1 ∈Mn and F2 ∈Mm be invertible,
and consider the transformation

ρ 7→ ρ′ := (F1 ⊗ F2)ρ(F1 ⊗ F2)†

Tr
(
(F1 ⊗ F2)ρ(F1 ⊗ F2)†

) . (3.3)

Transformations of this kind are called local filters. It is straightforward to
show that ρ′ is separable whenever ρ is separable. Furthermore, invertibility
of F1 and F2 ensures that we can reverse this transformation, so we actually
know that ρ′ is separable if and only if ρ is separable.

Thus even if a particular separability criterion is unable to detect en-
tanglement in ρ, there may yet be hope: we could try to find F1 and F2
such that the separability criterion detects entanglement in ρ′ instead. For
example, the proof of the following result makes use of local filters and the
reduction map.

Proposition 3.2.1. Let ρ ∈ Mn ⊗ Mm be separable. Then rank(ρ) ≥
max{rank(ρA), rank(ρB)}.



Entanglement Detection 23

Proof. We only show that rank(ρ) ≥ rank(ρA), since the corresponding
inequality for ρB is proved analogously. Also, we prove the contrapositive
of the statement, so we start by assuming that rank(ρ) < rank(ρA), and we
prove that ρ is entangled.

First, we apply a particular local filter to ρ. If ρA has spectral decom-
position ρA = UDU †, where U is unitary and D is diagonal, then we define
F1 := UD−1/2U †, where D−1/2 is the diagonal matrix whose (i, i)-entry is
1/
√
di,i if di,i 6= 0, and whose (i, i)-entry is 1 if di,i = 0. Then we investigate

the separability of the filtered state

ρ′ := (F1 ⊗ I)ρ(F1 ⊗ I)†

Tr
(
(F1 ⊗ I)ρ(F1 ⊗ I)†

) .
Our reason for doing this is that

ρ′A =
TrB

(
(F1 ⊗ I)ρ(F1 ⊗ I)†

)
Tr
(
(F1 ⊗ I)ρ(F1 ⊗ I)†

) = F1ρAF
†
1

Tr(F1ρAF
†
1 )

= PA/rank(ρA),

where PA is the orthogonal projection onto the range of ρA. We now apply
the reduction map R (from Section 1.2.2) to one half of ρ′:

(id⊗R)(ρ′) = TrB(ρ′)⊗ I − ρ′ = ρ′A ⊗ I − ρ′ = (PA ⊗ I)/rank(ρA)− ρ′.

Now let |v〉 be an eigenvector of ρ′ corresponding to its maximal eigenvalue
λmax. Since Tr(ρ′) = 1, it must be the case that λmax ≥ 1/rank(ρ′) =
1/rank(ρ). Thus

〈v|(id⊗R)(ρ′)|v〉 = 〈v|
(
(PA ⊗ I)/rank(ρA)− ρ′

)
|v〉

≤ 1/rank(ρA)− 〈v|ρ′|v〉
≤ 1/rank(ρA)− 1/rank(ρ).

(3.4)

Now we can use the fact that rank(ρ) < rank(ρA) to conclude that the
quantity (3.4) is strictly negative, so (id ⊗ R)(ρ′) 6≥ 0. It follows from the
fact that the reduction map is positive that ρ is entangled.

3.2.1 The Filter Normal Form
The idea presented in the proof of Proposition 3.2.1 actually applies in a
fair bit of generality: one local filter that often helps us prove that a state is
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entangled is one that sends one of the reduced states of ρ to a scalar multiple
of the identity matrix (i.e., the maximally-mixed state). In a sense, such a
local filter is throwing away the irrelevant local information on one of the
systems, leaving us only with local information on the other system as well
as information about the entanglement between the systems.

The following theorem shows that it is often possible to find a local filter
that even makes both of the reduced states maximally-mixed.

Theorem 3.2.2. Suppose ρ ∈ Mn ⊗Mm has full rank. Then there exist
invertible F1 ∈ Mn and F2 ∈ Mm such that the locally filtered state ρ′

described by (3.3) has operator Schmidt decomposition

ρ′ = 1
nm

(
I +

r∑
i=1

ξiGi ⊗Hi

)
, (3.5)

where each Gi and Hi is Hermitian and traceless.

Before proving this result, we note that the decomposition (3.5) is some-
times called the filter normal form of ρ. This form is useful because the
corresponding filter can be thought of as the one that makes ρ the “most
entangled” (even though we haven’t actually changed whether ρ is separa-
ble or entangled). Thus if a separability criterion is not able to detect the
entanglement in ρ, it might be a good idea to first convert ρ into its filter
normal form and then apply the separability criterion.

Proof. For each state ρ ∈ Mn ⊗Mm, start by defining a function fρ that
acts on SL(n,C)×SL(m,C), the set of pairs of determinant-1 operators of
the form F1 ∈Mn and F2 ∈Mm, as follows:

fρ(F1, F2) := Tr((F1 ⊗ F2)ρ(F1 ⊗ F2)†).

Our first goal is to minimize fρ, since it turns out that doing this will
essentially tell us what local filter to use.

We will minimize fρ via an iterative procedure. Begin by setting F1 =
det(ρA)1/2nρ

−1/2
A and F2 = I. Then

fρ(F1, I) = Tr((F1 ⊗ I)ρ(F1 ⊗ I)†) = Tr(F1ρAF
†
1 )

= det(ρA)1/nTr(I) = ndet(ρA)1/n ≤ 1 = fρ(I, I),
(3.6)
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where the final inequality comes from the arithmetic-geometric mean in-
equality applied to the eigenvalues of ρA. Furthermore, the arithmetic-
geometric mean inequality tells us that equality holds in (3.6) if and only
if ρA = I/n.

Now we set ρ̃ := (F1 ⊗ I)ρ(F1 ⊗ I)†/Tr((F1 ⊗ I)ρ(F1 ⊗ I)†) and re-
peat this argument (but on Bob’s system). Specifically, if we define F2 =
det(ρ̃B)1/2nρ̃

−1/2
B then reasoning similar to that above shows that fρ̃(I, F2) =

fρ(F1, F2) ≤ fρ(F1, I). Furthermore, equality holds if and only if ρ̃B = Im,
just like before.

We now return to Alice’s system and repeat this procedure, then back
to Bob’s, and so on ad infinitum. Since every step of this procedure re-
duces the value of fρ, and this function is clearly bounded below by 0, we
must converge to a local minimum, which is attained by some particular
F1 ⊗ F2 (furthermore, this local minimum does not equal 0 since ρ has full
rank and we are choosing F1 and F2 at each step to have determinant 1).
Furthermore, the only stationary points of this procedure are those with
both partial traces of ρ′ := (F1 ⊗ F2)ρ(F1 ⊗ F2)†/Tr((F1 ⊗ F2)ρ(F1 ⊗ F2)†)
proportional to the identity, so we must converge to such a point.

In particular, what we have proved is that there exists a local filter
F1 ⊗ F2 such that ρ′ has ρ′A = I/n and ρ′B = I/m. This is the local filter
that is desired in the statement of the theorem. To see that the operator
Schmidt decomposition has the desired form, consider the operator Schmidt
decomposition of ρ′ − I/(nm):

ρ′ − I/(nm) =
r∑
i=1

γiAi ⊗Bi.

Since TrB(ρ′ − I/(nm)) = 0, we have ∑r
i=1 γiTr(Bi)Ai = 0. Since the Ai’s

are linearly independent, it follows that γiTr(Bi) = 0 for all i. However,
γi > 0, so Tr(Bi) = 0 for all i. A similar argument shows that Tr(Ai) = 0
for all i. Thus

ρ′ = 1
nm

(
I +

r∑
i=1

ξiGi ⊗Hi

)
,

where ξi = nmγi, Gi = Ai, and Hi = Bi for all i. The fact that this is
an operator Schmidt decomposition of ρ′ follows from the fact that each Gi

and Hi is traceless and thus orthogonal to I.
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We note that the iterative procedure to find the local filter discussed in
the proof of Theorem 3.2.2 works very well in practice. Furthermore, under
some mild assumptions (see [Gur03] for details), the iterations converge
exponentially quickly to the local filter that we desire.

The Filter Covariance Matrix Criterion

We are finally in a position to prove one of the strongest entanglement
criteria that can be implemented “trivially” by software such as MATLAB.

Theorem 3.2.3 (Filter covariance matrix criterion). Suppose ρ ∈Mn⊗Mm

is separable and has filter normal form as in (3.5). Then ∑r
i=1 ξi ≤ nm −√

nm.

Proof. Just apply the realignment criterion to the filter normal form of ρ.
Since ρ is separable, the locally filtered state ρ′ is also separable. Since we
have the following as an operator Schmidt decomposition of ρ′:

ρ′ = 1
nm

(
I +

r∑
i=1

ξiGi ⊗Hi

)
,

it follows from Theorem 3.1.2 (and rescaling each matrix in the above de-
composition to have Frobenius norm 1) that

1√
nm

+
r∑
i=1

ξi
nm
≤ 1.

Rearranging this inequality yields ∑r
i=1 ξi ≤ nm−

√
nm, as desired.

While Theorem 3.2.3 is perhaps difficult to use analytically, it performs
extremely well numerically and can realistically be used on states living in
very large spaces (e.g., n,m ≈ 50).

Exercises
Exercise 4. Show that Proposition 3.2.1 holds for all PPT states, not just
separable states. That is, let ρ ∈Mn ⊗Mm and show that (id⊗ T )(ρ) ≥ 0
implies rank(ρ) ≥ max{rank(ρA), rank(ρB)}.



Lecture 4

Detecting PPT Entangled
States: Symmetric Extensions

In this lecture, we present the most powerful separability criterion that
is currently known, which is based on the idea of extending a state to
one acting on a larger Hilbert space. The upside of this test is that it is
fantastically strong. The downside is that it is much more computationally-
intensive than the tests that we looked at previously.

4.1 Symmetric Extensions
If we are given a separable state ρ ∈Mn⊗Mm with separable decomposition

ρ =
k∑
i=1

pi|ai〉〈ai| ⊗ |bi〉〈bi|,

notice that we can “extend” ρ to a state living on the tripartite space
Mn ⊗Mm ⊗Mm in a natural way:

ρ̃ :=
k∑
i=1

pi|ai〉〈ai| ⊗ |bi〉〈bi| ⊗ |bi〉〈bi|. (4.1)

In particular, ρ̃ is a valid quantum state that satisfies Tr2(ρ̃) = Tr3(ρ̃) = ρ.
In fact, there is nothing special about just adding one more copy of Mm:

27
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we can similarly find extensions of ρ in Mn⊗M⊗s
m for any s ≥ 2 of the form

ρ̃ =
k∑
i=1

pi|ai〉〈ai| ⊗ |bi〉〈bi| ⊗ · · · ⊗ |bi〉〈bi|︸ ︷︷ ︸
s copies

.

As before, ρ̃ is a valid quantum state, and upon tracing out any s−1 copies
ofMm we are left with the state ρ. This leads us to the following definition.

Definition 4.1.1. Let ρ ∈ Mn ⊗Mm. We say that ρ has an s-copy sym-
metric extension if there exists a state ρ̃ ∈Mn ⊗M⊗s

m such that

Tr1,i(ρ̃) = ρ ∀ 2 ≤ i ≤ s+ 1,

where Tr1,i denotes the partial trace over all systems except for the first and
i-th systems.

As we already noted, separable states have s-copy symmetric extensions
for all s ≥ 2. What’s more interesting is the fact that separable state are
the only states with this property [DPS04]. That is, if a state is entangled
then there exists some s ≥ 2 such that it does not have an s-copy sym-
metric extension. Thus, symmetric extensions provide a complete family of
separability criteria – if we could find some way to determine whether or
not a state has an s-copy symmetric extension, we could completely solve
the separability problem.

4.1.1 Semidefinite Programming
Unfortunately, we don’t have time to give a proper introduction to semidef-
inite programming, so we’ll just skim the basics. For a much more thorough
introduction, see [Wat11].

A semidefinite program (SDP) is a certain type of convex optimization
problem that is useful both theoretically and numerically. For our purposes
though, we won’t get into its theoretical niceties, and will instead focus only
on its excellent numerical properties. In particular, semidefinite programs
can be solved efficiently—if you so desire, you can download the free CVX
package [GB12] for MATLAB, which provides a simple interface for solving
SDPs numerically.

First, a linear map Φ : Mn → Mm is called Hermiticity-preserving if
Φ(X)† = Φ(X) whenever X† = X. Then a semidefinite program is an
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optimization problem defined by a Hermiticity-preserving linear map Φ :
Mn → Mm and two operators A ∈ Mn and B ∈ Mm. The semidefinite
program associated with Φ, A, and B is the following optimization problem:

minimize: Tr(AX)
subject to: Φ(X)−B ≥ 0

X ≥ 0
(4.2)

In the above SDP, we optimize over positive semidefinite matrices X ∈Mn,
and the constraints of the form “≥ 0” mean that the matrices on the left are
positive semidefinite. If “≥ 0” instead meant that each entry of the matrix
were nonnegative (and all of the matrices considered were real), then this
would be a linear program, which you may have learned about during your
undergraduate studies.

As you might have guessed, semidefinite programming is exactly the
tool that is used to determine whether or not a given state ρ ∈ Mn ⊗Mm

has an s-copy symmetric extension. In particular, the following SDP works
in the s = 2 case:

minimize: Tr(X)
subject to: Tr2(X) = ρ

Tr3(X) = ρ
X ≥ 0

(4.3)

where we optimize over positive semidefinite X ∈ Mn ⊗Mm ⊗Mm. Note
that this optimization problem is not quite in the form (4.2), but it is
hopefully at least somewhat believable that it could be massaged to be in
that form. This SDP also generalizes to s-copy symmetric extensions in a
straightforward manner.

Notice that if ρ has a 2-copy symmetric extension then the SDP (4.3)
has optimal value 1, since every symmetric extension X of ρ has Tr(X) =
Tr(ρ) = 1. On the other hand, if ρ does not have a 2-copy symmetric
extension, then there is no X satisfying the constraints of the SDP (4.3).
In this case, the SDP returns an optimal value of +∞.

A few notes:

• Although semidefinite programs can be solved efficiently, determining
whether or not a state has a s-copy symmetric extension is much
slower than the methods discussed previously in this module, even
when s = 2.
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• Furthermore, symmetric extensions themselves do not provide a very
strong test for entanglement (as we will see in the next section). How-
ever...

• We can augment this test by searching for a symmetric extension that
also satisfies another separability criterion, such as the PPT criterion
or the realignment criterion. The PPT criterion is almost always what
is used in practice.

To illustrate what we mean by the third point above, consider the fol-
lowing variant of the SDP (4.3):

minimize: Tr(X)
subject to: Tr2(X) = ρ

Tr3(X) = ρ
(id⊗ id⊗ T )(X) ≥ 0
X ≥ 0

As you can see, this SDP determines whether or not ρ has a symmetric
extension that also has positive partial transpose. This is a fine thing to
search for, since we can see from (4.1) that every separable state has a
symmetric extension that is not only PPT, but is even separable itself, so it
passes any separability criteria we can throw at it. We could add in another
constraint that requires that the symmetric extension has positive partial
transpose when the transpose is applied to the first system instead of the
third, or a transpose that is applied to any combination of the systems that
we choose.

What we end up with is a trade-off game: the more constraints we add
to the SDP, the longer the SDP will take to run, but the more effective it is.
We could even add the realignment criterion as one of the constraints (but
this is more complicated) or first apply a local filter to ρ before running the
SDP.

4.2 Comparison of Methods
We have seen many methods for detecting entanglement in quantum states
in this module, but we have not yet discussed their effectiveness too much.
We now investigate how well these separability criteria work on one specific
family of quantum states.
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Separability criterion used Maximal p detected

2-copy symmetric extension none
3-copy symmetric extension 0.0309
4-copy symmetric extension 0.0445
realignment criterion (Theorem 3.1.2) 0.1103
filter covariance matrix criterion (Theorem 3.2.3) 0.1278
2-copy PPT symmetric extension 0.1351
3-copy PPT symmetric extension 0.1351
4-copy PPT symmetric extension 0.1351

Table 4.1: A comparison of the effectiveness of the various separability
criteria that were introduced in this module. The column on the right
gives the (approximate) largest value of p such that the given separability
criterion is able to detect the entanglement in the state ρp. Larger values
of p intuitively correspond to stronger separability criteria.

4.2.1 The Noisy “Tiles” State
Recall from Lecture 2 that we created an unextendible product basis Utiles
and then showed that it can be used to create a PPT entangled state ρtiles ∈
M3⊗M3 via Proposition 2.2.1. In order to really put our separability criteria
to the test, consider the following state, which is a mixture of ρtiles and the
maximally-mixed state I/9 that depends on a real parameter 0 ≤ p ≤ 1:

ρp := pI/9 + (1− p)ρtiles.

When p = 0, ρp = ρtiles, which is entangled, and when p = 1, ρp = I/9,
which is separable. By convexity of the set of separable states, we know that
there exists some particular p∗ ∈ (0, 1] such that ρp is entangled whenever
p < p∗ and ρp is separable whenever p ≥ p∗. Intuitively, the entanglement
in ρp becomes more difficult to detect as p increases.

As discussed in previous lectures, the partial transpose, reduction map,
and Choi map are all incapable of detecting entanglement in ρtiles, so they
are incapable of detecting entanglement in any ρp. Table 4.1 provides the
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(approximate) largest value of p such that a given entanglement test is able
to detect entanglement in ρp.

As we see from the table, the tests based on symmetric extensions them-
selves seem to be fairly weak, but they then become even stronger than the
filter covariance matrix criterion when used in conjunction with the PPT
criterion. For what it’s worth, we only know that ρp is separable when
p ≥ 0.4367. Thus there is a rather large gap of values p ∈ (0.1351, 0.4367)
where we do not know whether or not ρp is entangled.

Exercises
Exercise 5. Let a ∈ (0,∞) be a real number and define a quantum state
ρa ∈M3 ⊗M3 by its standard basis representation

ρa := a

3(1 + a+ a2)



1 · · · 1 · · · 1
· 1/a · · · · · · ·
· · a · · · · · ·
· · · a · · · · ·
1 · · · 1 · · · 1
· · · · · 1/a · · ·
· · · · · · 1/a · ·
· · · · · · · a ·
1 · · · 1 · · · 1


.

Notice that the a = 2 case gives the state (3.1).

a) Show that ρa has positive partial transpose for all a ∈ (0,∞).

b) Show that ρa is entangled for all a ∈ (0, 1)∪ (1,∞). You may use any
entanglement test of your choosing.

Side note: It turns out that ρa is separable when a = 1.
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