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What is a Linear Preserver Problem?

A linear preserver problem is the problem of characterizing linear
maps on complex matrices (i.e., superoperators) that preserve
some property of those matrices. For example, we could ask...

What maps send nonsingular matrices to nonsingular
matrices?

What maps preserve the singular values of the matrices they
act on?

What maps send positive semidefinite matrices to positive
semidefinite matrices?
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What is a Linear Preserver Problem?

Note that the matrix transpose map works for each of those
problems. That is, if Mn is the space of complex n×n matrices and
XT denotes the transpose (xji ) of a matrix X = (xij) ∈ Mn, then...

If X is nonsingular, then so is XT .

The singular values of XT are the same as the singular values
of X .

If X is positive semidefinite (i.e., X ≥ 0), then XT ≥ 0.

We will see repeatedly throughout this talk that the transpose map
is quite special indeed.
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What is a Linear Preserver Problem?

Before getting into the structure of linear maps that preserve
certain properties of matrices, we should first characterize linear
maps on complex matrices themselves.

Theorem

Φ : Mn → Mn is linear if and only if there exist families of matrices{
Ai

}
and

{
Bi

}
such that

Φ(X ) ≡
n2∑
i=1

AiXBi .
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Invertibility Preservers

One of the earliest linear preserver problems was the problem of
characterizing linear maps that send nonsingular matrices to
nonsingular matrices, which was solved in 1949 by Dieudonné.

Theorem

Let Φ : Mn → Mn be an invertible linear map. Then Φ(X ) is
nonsingular whenever X ∈ Mn is nonsingular if and only if there
exist nonsingular A,B ∈ Mn such that either

Φ(X ) ≡ AXB or Φ(X ) ≡ AXTB.
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Singular Value Preservers

The characterization of invertibility-preserving maps is extremely
useful because it allows us to easily derive the answer to other
linear preserver problems. For example, we can derive the structure
of maps that preserve singular values as follows:

Recall a square matrix is nonsingular if and only if it does not
have a zero singular value. Thus, any map Φ that preserves
singular values is invertibility-preserving.

By the result on the previous slide there exist nonsingular
A,B ∈ Mn such that either

Φ(X ) ≡ AXB or Φ(X ) ≡ AXTB.

Argue that if Φ preserves singular values then A and B are
both unitary.
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Singular Value Preservers

What we sketched on the previous slide was a proof of the
following result:

Theorem

Let Φ : Mn → Mn be a linear map. Then the singular values of
Φ(X ) equal the singular values of X for all X ∈ Mn if and only if
there exist unitary matrices U,V ∈ Mn such that either

Φ(X ) ≡ UXV or Φ(X ) ≡ UXTV .
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Positivity Preservers

The linear preserver problems that we have seen so far have had
relatively simple answers. But what about the problem of
characterizing maps that send positive semidefinite matrices to
positive semidefinite matrices?

That is, Φ(X ) ≥ 0 whenever X ≥ 0.

Such maps are called positive.

Finding a characterization of these maps is an open problem!

Deciding whether or not Φ is positive is NP-HARD.
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Completely Positive Maps

Fortunately, in quantum information theory we aren’t as interested
in positive maps as we are in completely positive maps (i.e.,
maps such that idn ⊗ Φ is positive for any n ≥ 1).

The following result of Choi is well-known to the quantum
information theory crowd:

Theorem

Let Φ : Mn → Mn be a linear map. Then Φ is completely positive
if and only if there exists a family of matrices

{
Ai

}
such that

Φ(X ) ≡
n2∑
i=1

AiXA∗i .
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Rank Preservers

One fundamental type of linear preserver problems is the family of
problems that ask for characterizations of maps that preserve
certain aspects of matrix rank. For example...

Dieudonné’s theorem about invertibility-preserving maps
characterizes maps that send rank-n matrices to rank-n
matrices.

Another classical result says that if an invertible map sends
rank-1 matrices to rank-1 matrices, it must also be of the
form described by Dieudonné’s theorem.
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Rank Preservers

A much stronger version of those results is the following theorem,
which was proved by Botta in 1978.

Theorem

Let Φ : Mn → Mn be an invertible linear map and let k < n. Then
rank(Φ(X )) ≤ k whenever rank(X ) ≤ k (X ∈ Mn) if and only if
there exist nonsingular A,B ∈ Mn such that either

Φ(X ) ≡ AXB or Φ(X ) ≡ AXTB.
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Matrix Norm Isometries

In the introductory section we saw a characterization of linear
maps that preserve singular values of matrices. But what if we
look at linear maps that preserve unitarily-invariant norms (which
are just functions of singular values)?

What are the isometries of the operator norm ‖ · ‖ (= the
largest singular value)?

What are the isometries of the trace norm ‖ · ‖tr (= the sum
of the singular values)?

What are the isometries of the Frobenius norm ‖ · ‖F (= the
Euclidean norm of the vector of singular values)?
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Operator Norm and Trace Norm Isometries

It is not difficult to show that if a linear map preserves the
operator norm or the trace norm, then it must actually preserve all
singular values. That is, we have the following result:

Theorem

Let Φ : Mn → Mn be a linear map. Then the following are
equivalent:

1

∥∥Φ(X )
∥∥ =

∥∥X
∥∥ for all X ∈ Mn.

2

∥∥Φ(X )
∥∥
tr

=
∥∥X
∥∥
tr

for all X ∈ Mn.

3 There exist unitary matrices U,V ∈ Mn such that either

Φ(X ) ≡ UXV or Φ(X ) ≡ UXTV .
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Frobenius Norm Isometries

To understand the isometries of the Frobenius norm, it helps to
introduce some basic quantum information theory concepts.

We will write unit (column) vectors in Cn as “kets”: |v〉 ∈ Cn.
Dual (row) vectors are written as “bras”: 〈v | := |v〉∗.

Unit vectors |v〉 ∈ Cn represent pure quantum states.

We are often interested in pure states in Cn ⊗ Cn. A state of
the form |v1〉 ⊗ |v2〉 ∈ Cn ⊗ Cn is said to be separable.
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Frobenius Norm Isometries

There is a natural isomorphism between Cn ⊗ Cn and Mn. Simply
associate the separable state |v〉 := |v1〉 ⊗ |v2〉 with the rank-1
matrix X|v〉 := |v1〉〈v2| and extend linearly.

Under this isomorphism, separable pure states correspond to
rank-1 matrices.

The isomorphism is isometric if the norm on Cn ⊗ Cn is the
Euclidean norm and the norm on Mn is the Frobenius norm.

The isomorphism relates superoperators and operators as
follows:∑

i

AiX|v〉Bi = X|w〉, where |w〉 =

(∑
i

Ai ⊗ BT
i

)
|v〉.
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Frobenius Norm Isometries

It follows that a superoperator preserves the Frobenius norm if and
only if the operator associated to it through this isomorphism is
unitary.

In other words, the super operator

Φ(X ) ≡
∑
i

AiXBi

is an isometry of the Frobenius norm if and only if the operator∑
i

Ai ⊗ BT
i

is unitary.
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Unitarily-Invariant Norm Isometries

A beautiful result of Sourour (1981) says that the Frobenius norm
is in some sense unique with regards to its isometries – it is the
only unitarily-invariant norm that has an isometry group different
from the operator norm:

Theorem

Let Φ : Mn → Mn be a linear map and let ‖ · ‖ui be a
unitarily-invariant norm that is not a multiple of the Frobenius
norm. Then Φ is an isometry of ‖ · ‖ui if and only if there exist
unitary matrices U,V ∈ Mn such that either

Φ(X ) ≡ UXV or Φ(X ) ≡ UXTV .
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Operators Preserving Separability (and Schmidt Rank)

Recall that any pure state of the form |v1〉 ⊗ |v2〉 ∈ Cn ⊗ Cn is
called separable. A natural generalization of separability is the
notion of Schmidt rank...

Definition

The Schmidt rank of a pure state |v〉 ∈ Cn ⊗ Cn, denoted
SR(|v〉), is the least natural number k such that |v〉 can be
written as a linear combination of k separable pure states.
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Operators Preserving Separability (and Schmidt Rank)

Some notes regarding the Schmidt rank are in order...

|v〉 ∈ Cn ⊗ Cn is separable if and only if SR(|v〉) = 1.

For any |v〉 ∈ Cn ⊗ Cn, we have 1 ≤ SR(|v〉) ≤ n.

Recall the isomorphism that associates |v〉 ∈ Cn ⊗ Cn with
X|v〉 ∈ Mn from earlier. Then SR(|v〉) = rank(X|v〉).
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Operators Preserving Separability (and Schmidt Rank)

But wait, we already know the structure of superoperators that
preserve the set of matrices with rank at most k.

So by using our favourite isomorphism again, we immediately get
the following result, which characterizes operators that preserve
the set of pure states with Schmidt rank at most k ...
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Operators Preserving Separability (and Schmidt Rank)

Theorem

Let U ∈ Mn ⊗Mn and 1 ≤ k < n. Define

Sk :=
{
|v〉 ∈ Cn ⊗ Cn : SR(|v〉) ≤ k

}
.

Then USk ⊆ Sk if and only if there exist unitaries V ,W ∈ Mn

such that either

U = V ⊗W or U = S(V ⊗W ),

where S is the “swap operator” defined by S(|a〉 ⊗ |b〉) = |b〉 ⊗ |a〉
for all |a〉, |b〉 ∈ Cn.

Nathaniel Johnston Linear Preserver Problems in Quantum Information Theory



Introduction
Linear Preserver Problems of Interest

Applications in Quantum Information Theory
Further Reading

Operators Preserving Separability (and Schmidt Rank)
Isometries of s(k)- and S(k)-Norms

Operators Preserving Mixed Separability

The theorem on the previous slide, in the k = 1 case, characterized
operators that send separable pure states to separable pure states.
But what about mixed states?

A general quantum state is represented by a density operator: a
positive semidefinite operator with trace 1.

If a density operator ρ can be written in the form ρ =
∑

i |vi 〉〈vi |,
where each |vi 〉 is a separable pure state, then ρ is said to be
separable.

Open Problem: If Φ(ρ) is separable whenever ρ is separable, what
can we say about Φ? Does it have a nice form analogous to the
form of operators that preserve pure state separability?
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Isometries of s(k)- and S(k)-Norms

There are two families of norms based on the Schmidt rank of pure
states that come up from time to time in quantum information
theory. One family of norms for vectors |v〉 ∈ Cn ⊗ Cn and one
family of norms for matrices X ∈ Mn ⊗Mn:

∥∥|v〉∥∥
s(k)

:= sup
|w〉

{
|〈w |v〉| : SR(|w〉) ≤ k

}
∥∥X
∥∥
S(k)

:= sup
|v〉,|w〉

{
|〈w |X |v〉| : SR(|v〉), SR(|w〉) ≤ k

}
.
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Isometries of s(k)-Norms

For the vector norms, we have the following result that says that∥∥|v〉∥∥
s(k)

is actually a unitarily-invariant norm on the matrix X|v〉
from the isomorphism that we have been using.

Theorem

Let |v〉 ∈ Cn ⊗ Cn and let X|v〉 ∈ Mn be the matrix associated to
|v〉 via the standard vector-operator isomorphism. Let
σ1 ≥ σ2 ≥ · · ·σn ≥ 0 be the singular values of X|v〉. Then

∥∥|v〉∥∥
s(k)

=

√√√√ k∑
i=1

σ2i .
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Isometries of s(k)-Norms

Since that norm on X|v〉 is unitarily-invariant, we can use Sourour’s
result on the isometries of unitarily-invariant matrix norms and go
back through the vector-operator isomorphism to characterize the
isometries of ‖ · ‖s(k):

Theorem

Let 1 ≤ k < n and U ∈ Mn ⊗Mn. Then
∥∥U|v〉

∥∥
s(k)

=
∥∥|v〉∥∥

s(k)

for all |v〉 ∈ Cn ⊗Cn if and only if there exist unitaries V ,W ∈ Mn

such that either

U = V ⊗W or U = S(V ⊗W ),

where S is the swap operator as before.
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Isometries of s(k)-Norms

Intuitively, the previous theorem makes sense because the norm
‖ · ‖s(k) can be thought of as a measure of “how separable” a state
is (for example,

∥∥|v〉∥∥
s(k)

= 1 if and only if SR(|v〉) ≤ k).

The isometry result then says that the only operators that do not
alter that separability measure are unitaries that act independently
on each subsystem.

We will now present the analogous result for the ‖ · ‖S(k) norms.
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Isometries of S(k)-Norms

Recall that
∥∥X
∥∥
S(k)

= sup
|v〉,|w〉

{
|〈w |X |v〉| : SR(|v〉),SR(|w〉) ≤ k

}

The isometries of these norms are a bit more complicated to
derive, but are almost exactly what someone would naively expect.

The only oddity comes in the k = 1 case, when we find that the
isometry group is actually slightly larger than it is when 2 ≤ k < n.

In particular, there is one additional generator of the isometry
group in the k = 1 case: the partial transpose map (idn ⊗ T ).
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Isometries of S(k)-Norms

Theorem

Let 1 ≤ k < n and Φ : Mn ⊗Mn → Mn ⊗Mn. Then∥∥Φ(X )
∥∥
S(k)

=
∥∥X
∥∥
S(k)

for all X ∈ Mn ⊗Mn if and only if Φ can

be written as a composition of one or more of the following maps:

(a) X 7→ (U ⊗ V )X (W ⊗ Y ), where U,V ,W ,Y ∈ Mn are unitary
matrices,

(b) X 7→ S1XS2, where S1, S2 ∈
{

I ,S
}
⊂ Mn ⊗Mn and S is the

swap operator,

(c) the transpose map T , and

(d) if k = 1, the partial transpose map (idn ⊗ T ).
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