Non-Uniqueness of Minimal Superpermutations

Nathaniel Johnston
Institute for Quantum Computing, University of Waterloo Waterloo, Ontario, Canada
May 10, 2013
UNIVERSITY OF
WATERLOO
IQC
Institute for Quantum Computing

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example $(\mathrm{n}=\mathrm{k}=2)$: The string 11221 has the desired property, since it contains each of $11,12,21$, and 22 as a substring:

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example ($\mathbf{n}=\mathrm{k}=2$): The string 11221 has the desired property, since it contains each of $11,12,21$, and 22 as a substring:

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example ($\mathbf{n}=\mathrm{k}=2$): The string 11221 has the desired property, since it contains each of $11,12,21$, and 22 as a substring:

11221	11221
11221	11221

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a de Bruijn sequence.

A trivial lower bound is $n^{k}+k-1$, since there are n^{k} words of length k on n symbols, and any string with length L has $L-k+1$ substrings of length k

- More interestingly, this lower bound is attained - de Bruijn
sequences have length $n^{k}+k-1$

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a de Bruijn sequence.

A trivial lower bound is $n^{k}+k-1$, since there are n^{k} words of length k on n symbols, and any string with length L has $L-k+1$ substrings of length k.
\odot
More interestingly, this lower bound is attained - de Bruijn
sequences have length $n^{k}+k-1$

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a de Bruijn sequence.

A trivial lower bound is $n^{k}+k-1$, since there are n^{k} words of length k on n symbols, and any string with length L has $L-k+1$ substrings of length k.

- More interestingly, this lower bound is attained - de Bruijn sequences have length $n^{k}+k-1$. Non-Uniqueness

Superpermutations

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example $(\mathrm{n}=3)$: The string 123121321 is a superpermutation on the three symbols 1,2 , and 3 , since it contains each of 123,132 , $213,231,312$, and 321 as substrings:

$$
123121321
$$

$$
123121321
$$

$$
123121321 \quad 123121321
$$

$$
123121321 \quad 123121321
$$

Superpermutations

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example $(\mathbf{n}=3)$: The string 123121321 is a superpermutation on the three symbols 1,2 , and 3 , since it contains each of 123,132 , $213,231,312$, and 321 as substrings:

Superpermutations

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example $(\mathbf{n}=3)$: The string 123121321 is a superpermutation on the three symbols 1,2 , and 3 , since it contains each of 123,132 , $213,231,312$, and 321 as substrings:

123121321	123121321
123121321	123121321
123121321	123121321

Superpermutations

How small can strings with this property be? A shortest string with this property is called a minimal superpermutation.

A trivial lower bound is $n!+n-1$, since there are n ! permutations of n symbols, and any string with length L has $L-n+1$ substrings of length n (does this seem familiar?).
-(However, when $n \geq 3$, this lower bound is not attained!

Superpermutations

How small can strings with this property be? A shortest string with this property is called a minimal superpermutation.

A trivial lower bound is $n!+n-1$, since there are $n!$ permutations of n symbols, and any string with length L has $L-n+1$ substrings of length n (does this seem familiar?).

๑- However, when $n \geq 3$, this lower bound is not attained!

Superpermutations

How small can strings with this property be? A shortest string with this property is called a minimal superpermutation.

A trivial lower bound is $n!+n-1$, since there are $n!$ permutations of n symbols, and any string with length L has $L-n+1$ substrings of length n (does this seem familiar?).

- However, when $n \geq 3$, this lower bound is not attained!

Superpermutations

For example, when $n=3$, minimal superpermutations have length 9 , not $3!+3-1=8$.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

Superpermutations

For example, when $n=3$, minimal superpermutations have length 9 , not $3!+3-1=8$.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

Superpermutations

For example, when $n=3$, minimal superpermutations have length 9 , not $3!+3-1=8$.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

Superpermutations

For example, when $n=3$, minimal superpermutations have length 9 , not $3!+3-1=8$.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

The length of minimal superpermutations is still unknown when $n \geq 5$

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

n	Minimal Superpermutation	Length
1	1	$1=1!$
2	121	$3=1!+2!$
3	123121321	$9=1!+2!+3!$
4	123412314231243121342132413214321	$33=1!+2!+3!+4!$

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

n	Minimal Superpermutation	Length
1	1	$1=1!$
2	121	$3=1!+2!$
3	123121321	$9=1!+2!+3!$
4	123412314231243121342132413214321	$33=1!+2!+3!+4!$

The length of minimal superpermutations is still unknown when $n \geq 5$.

General Construction

Nonetheless, there is a simple recursive construction that produces small superpermutations for any n :

Introduction

General Construction

It is straightforward to show that:

- The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
- This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
- When $n \leq 4$, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with $12 \cdots n$).

General Construction

It is straightforward to show that:

- The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
- This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
- When $n \leq 4$, these superpermutation are minimal, and furthermore they are unique (up to requiring that they sta with $12 \cdots n$),

General Construction

It is straightforward to show that:

- The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
- This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
- When $n \leq 4$, these superpermutation are minimal, and furthermore they are unique (up to requiring that they sta t with $12 \cdots n$)

General Construction

It is straightforward to show that:

- The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
- This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
- When $n \leq 4$, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with $12 \cdots n$).

The Conjecture

These observations have led to the following conjecture [1]:

Conjecture

For all $n \geq 1$, the minimal superpermutation on n symbols has length $\sum_{k=1}^{n} k$! and is unique.
[1] D. Ashlock and J. Tillotson. Construction of small superpermutations and minimal injective superstrings. Congressus Numerantium, 93:91-98, 1993.

Non-Uniqueness when $n=5$

It turns out that uniqueness is false. In the $n=5$ case, there are at least 2 superpermutations of the conjectured minimal length 153:

123451234152341253412354123145231425314235142315423. 124531243512431524312543121345213425134215342135421 324513241532413524132541321453214352143251432154321

and
123451234152341253412354123145231425314235142315423. 124531243512431524312543121354213524135214352134521. 325413251432513425132451321543215342153241532145321

Non-Uniqueness when $n=5$

It turns out that uniqueness is false. In the $n=5$ case, there are at least 2 superpermutations of the conjectured minimal length 153:
123451234152341253412354123145231425314235142315423.

- 124531243512431524312543121345213425134215342135421 .
- 324513241532413524132541321453214352143251432154321

123451234152341253412354123145231425314235142315423 124531243512431524312543121354213524135214352134521 325413251432513425132451321543215342153241532145321

Non-Uniqueness when $n=5$

It turns out that uniqueness is false. In the $n=5$ case, there are at least 2 superpermutations of the conjectured minimal length 153:
123451234152341253412354123145231425314235142315423.

- 124531243512431524312543121345213425134215342135421 . - 324513241532413524132541321453214352143251432154321
and
123451234152341253412354123145231425314235142315423.
- 124531243512431524312543121354213524135214352134521 .
- 325413251432513425132451321543215342153241532145321

Non-Uniqueness: Main Result

More generally, we have shown that that uniqueness conjecture is extremely false. Our main result is:

Theorem
There are at least $\prod_{k=1}^{n-4}(n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1 , which agrees with uniqueness in these cases.

For $n=5,6,7,8$, this formula gives the values $2,96,8153726976$, and approximately 3×10^{50}, respectively.

Non-Uniqueness: Main Result

More generally, we have shown that that uniqueness conjecture is extremely false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4}(n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1 , which agrees with uniqueness in these cases.

For $n=5,6,7,8$, this formula gives the values $2,96,8153726976$, and approximately 3×10^{50}, respectively.

Non-Uniqueness: Main Result

More generally, we have shown that that uniqueness conjecture is extremely false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4}(n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1 , which agrees with uniqueness in these cases.

For $n=5,6,7,8$, this formula gives the values $2,96,8153726976$, and approximately 3×10^{50}, respectively.

Non-Uniqueness: Main Result

More generally, we have shown that that uniqueness conjecture is extremely false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4}(n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1 , which agrees with uniqueness in these cases.

For $n=5,6,7,8$, this formula gives the values $2,96,8153726976$, and approximately 3×10^{50}, respectively.

Open Questions

Are there superpermutations of length less than $\sum_{k=1}^{n} n$! when $n \geq 5$?

We have shown that there are many superpermutations of length $\sum_{k=1}^{n} n!$. Have we found them all or are there even more?
N. Johnston. Non-uniqueness of minimal superpermutations. Discrete Mathematics, 313:1553-1557, 2013. arXiv:1303.4150 [math.CO]

Open Questions

Are there superpermutations of length less than $\sum_{k=1}^{n} n!$ when $n \geq 5$?

We have shown that there are many superpermutations of length $\sum_{k=1}^{n} n!$. Have we found them all or are there even more?
N. Johnston. Non-uniqueness of minimal superpermutations. Discrete Mathematics, 313:1553-1557, 2013. arXiv:1303.4150 [math.CO]

