Non-Uniqueness of Minimal Superpermutations

Nathaniel Johnston

Institute for Quantum Computing, University of Waterloo Waterloo, Ontario, Canada

May 10, 2013

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Length Non-Uniqueness

De Bruijn Sequences Superpermutations

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example (n = k = 2): The string 11221 has the desired property, since it contains each of 11, 12, 21, and 22 as a substring:

11 221	1 12 21
11221	11221

* E > < E >

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example (n = k = 2): The string 11221 has the desired property, since it contains each of 11, 12, 21, and 22 as a substring:

11 221	1 12 21
112 <mark>21</mark>	11221

イロト イポト イヨト イヨト

De Bruijn Sequences

Consider a string on n symbols that has every word of length k as a substring.

Example (n = k = 2): The string 11221 has the desired property, since it contains each of 11, 12, 21, and 22 as a substring:

11221	1 <mark>12</mark> 21
112 <mark>21</mark>	11221

イロト イポト イヨト イヨト

Introduction Length Non-Uniqueness

De Bruijn Sequences Superpermutations

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a **de Bruijn sequence**.

A trivial lower bound is $n^k + k - 1$, since there are n^k words of length k on n symbols, and any string with length L has L - k + 1 substrings of length k.

More interestingly, this lower bound is attained – de Bruijn sequences have length $n^k + k - 1$.

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a **de Bruijn sequence**.

A trivial lower bound is $n^k + k - 1$, since there are n^k words of length k on n symbols, and any string with length L has L - k + 1 substrings of length k.

De Bruijn Sequences

How small can strings with this property be? A shortest string with this property is called a **de Bruijn sequence**.

A trivial lower bound is $n^k + k - 1$, since there are n^k words of length k on n symbols, and any string with length L has L - k + 1 substrings of length k.

More interestingly, this lower bound is attained – de Bruijn sequences have length $n^k + k - 1$.

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example (n = 3): The string 123121321 is a superpermutation on the three symbols 1, 2, and 3, since it contains each of 123, 132, 213, 231, 312, and 321 as substrings:

123 121321	12312 <mark>132</mark> 1
1231 <mark>213</mark> 21	1 <mark>231</mark> 21321
12 <mark>312</mark> 1321	123121 <mark>321</mark>

A B > A B >

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example (n = 3): The string 123121321 is a superpermutation on the three symbols 1, 2, and 3, since it contains each of 123, 132, 213, 231, 312, and 321 as substrings:

123 121321	12312 <mark>132</mark> 1
1231 <mark>213</mark> 21	1 <mark>231</mark> 21321
12 <mark>312</mark> 1321	123121 <mark>321</mark>

• = • • = •

A superpermutation is a string on n symbols that contains every permutation of those n symbols as a substring.

Example (n = 3): The string 123121321 is a superpermutation on the three symbols 1, 2, and 3, since it contains each of 123, 132, 213, 231, 312, and 321 as substrings:

<mark>123</mark> 121321	12312 <mark>132</mark> 1
1231 <mark>213</mark> 21	1 <mark>231</mark> 21321
12 <mark>312</mark> 1321	123121 <mark>321</mark>

• = • • = •

How small can strings with this property be? A shortest string with this property is called a **minimal superpermutation**.

A trivial lower bound is n! + n - 1, since there are n! permutations of n symbols, and any string with length L has L - n + 1 substrings of length n (does this seem familiar?).

However, when $n \ge 3$, this lower bound is **not** attained!

How small can strings with this property be? A shortest string with this property is called a **minimal superpermutation**.

A trivial lower bound is n! + n - 1, since there are n! permutations of n symbols, and any string with length L has L - n + 1 substrings of length n (does this seem familiar?).

However, when $n \ge 3$, this lower bound is **not** attained!

How small can strings with this property be? A shortest string with this property is called a **minimal superpermutation**.

A trivial lower bound is n! + n - 1, since there are n! permutations of n symbols, and any string with length L has L - n + 1 substrings of length n (does this seem familiar?).

However, when $n \ge 3$, this lower bound is **not** attained!

For example, when n = 3, minimal superpermutations have length 9, not 3! + 3 - 1 = 8.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

For example, when n = 3, minimal superpermutations have length 9, not 3! + 3 - 1 = 8.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

イロト イポト イヨト イヨト

For example, when n = 3, minimal superpermutations have length 9, not 3! + 3 - 1 = 8.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

< ロ > < 同 > < 回 > < 回 > < 回 > <

For example, when n = 3, minimal superpermutations have length 9, not 3! + 3 - 1 = 8.

- We already saw a superpermutation of length 9: 123121321
- Use computer search to see that no superpermutation of length 8 exists.

So how long are minimal superpermutations? Do they have any easily-described structure?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction
LengthKnown Results: $n \leq 4$
General ConstructionNon-UniquenessThe Conjecture

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

п	Minimal Superpermutation	Length
1	1	1 = 1!
2	121	3 = 1! + 2!
3	123121321	9 = 1! + 2! + 3!
4	123412314231243121342132413214321	33 = 1! + 2! + 3! + 4!

The length of minimal superpermutations is still unknown when $n \ge 5$.

Introduction
LengthKnown Results: $n \leq 4$
General ConstructionNon-UniquenessThe Conjecture

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

n	Minimal Superpermutation	Length
1	1	1 = 1!
2	121	3 = 1! + 2!
3	123121321	9 = 1! + 2! + 3!
4	123412314231243121342132413214321	33 = 1! + 2! + 3! + 4!

The length of minimal superpermutations is still unknown when $n \ge 5$.

イロト イポト イヨト イヨト

Introduction
LengthKnown Results: $n \leq 4$
General ConstructionNon-UniquenessThe Conjecture

Length when $n \leq 4$

When $n \leq 4$, the length of minimal superpermutations can be found via computer search:

п	Minimal Superpermutation	Length
1	1	1 = 1!
2	121	3 = 1! + 2!
3	123121321	9 = 1! + 2! + 3!
4	123412314231243121342132413214321	33 = 1! + 2! + 3! + 4!

The length of minimal superpermutations is still unknown when $n \ge 5$.

イロト イポト イヨト イヨト

Nonetheless, there is a simple recursive construction that produces small superpermutations for any n:

э

It is straightforward to show that:

- The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
- This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
- When n ≤ 4, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with 12 · · · n).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It is straightforward to show that:
 - The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
 - This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
 - When n ≤ 4, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with 12 · · · n).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It is straightforward to show that:
 - The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
 - This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
 - When n ≤ 4, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with 12 · · · n).

< ロ > < 同 > < 回 > < 回 > < 回 > <

- It is straightforward to show that:
 - The superpermutations produced in this way have length $\sum_{k=1}^{n} k!$
 - This procedure generates the superpermutations given in the earlier table when $n \leq 4$.
 - When n ≤ 4, these superpermutation are minimal, and furthermore they are unique (up to requiring that they start with 12 · · · n).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction	Known Results: $n \leq 4$
Length	General Construction
Non-Uniqueness	The Conjecture

The Conjecture

These observations have led to the following conjecture [1]:

Conjecture

For all $n \ge 1$, the minimal superpermutation on n symbols has length $\sum_{k=1}^{n} k!$ and is unique.

 D. Ashlock and J. Tillotson. Construction of small superpermutations and minimal injective superstrings. *Congressus Numerantium*, 93:91–98, 1993.

э

Non-Uniqueness when n = 5

It turns out that uniqueness is false. In the n = 5 case, there are at least 2 superpermutations of the conjectured minimal length 153:

123451234152341253412354123145231425314235142315423

 \cdot 1245312435124315243125431**2**1345213425134215342135421 \cdot 324513241532413524132541321453214352143251432154321

and

 $123451234152341253412354123145231425314235142315423\cdot$

 $\cdot 1245312435124315243125431 \\ \textbf{2} 1354213524135214352134521 \\ \cdot \\$

 $\cdot 325413251432513425132451321543215342153241532145321$

A B > A B >

Non-Uniqueness when n = 5

It turns out that uniqueness is false. In the n = 5 case, there are at least 2 superpermutations of the conjectured minimal length 153:

and

123451234152341253412354123145231425314235142315423 \cdot

 $\cdot 1245312435124315243125431 \\ \textbf{2} 1354213524135214352134521 \\ \cdot \\$

 $\cdot 325413251432513425132451321543215342153241532145321$

< ∃ ►

Non-Uniqueness when n = 5

It turns out that uniqueness is false. In the n = 5 case, there are at least 2 superpermutations of the conjectured minimal length 153:

and

 $\begin{array}{l} 123451234152341253412354123145231425314235142315423\cdot\\ \cdot \ 1245312435124315243125431 \\ \textbf{2}1354213524135214352134521\cdot\\ \cdot \ 32541325143251342513245132154321532415322145321 \\ \end{array}$

< A >

• = • • = •

More generally, we have shown that that uniqueness conjecture is **extremely** false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4} (n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1, which agrees with uniqueness in these cases.

For n = 5, 6, 7, 8, this formula gives the values 2, 96, 8153726976, and approximately 3×10^{50} , respectively.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

More generally, we have shown that that uniqueness conjecture is **extremely** false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4} (n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1, which agrees with uniqueness in these cases.

For n = 5, 6, 7, 8, this formula gives the values 2, 96, 8153726976, and approximately 3×10^{50} , respectively.

・ロト ・四ト ・ヨト ・ヨト

More generally, we have shown that that uniqueness conjecture is **extremely** false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4} (n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1, which agrees with uniqueness in these cases.

For n = 5, 6, 7, 8, this formula gives the values 2, 96, 8153726976, and approximately 3×10^{50} , respectively.

・ロト ・四ト ・モト・ ・モト

More generally, we have shown that that uniqueness conjecture is **extremely** false. Our main result is:

Theorem

There are at least $\prod_{k=1}^{n-4} (n-k-2)!^{k \cdot k!}$ distinct superpermutations on n symbols of the conjectured minimum length.

For $n \leq 4$, this formula equals 1, which agrees with uniqueness in these cases.

For n = 5, 6, 7, 8, this formula gives the values 2, 96, 8153726976, and approximately 3×10^{50} , respectively.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Open Questions

Are there superpermutations of length less than $\sum_{k=1}^{n} n!$ when $n \ge 5$?

We have shown that there are many superpermutations of length $\sum_{k=1}^{n} n!$. Have we found them all or are there even more?

N. Johnston. Non-uniqueness of minimal superpermutations. *Discrete Mathematics*, 313:1553–1557, 2013. arXiv:1303.4150 [math.CO]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Open Questions

Are there superpermutations of length less than $\sum_{k=1}^{n} n!$ when $n \ge 5$?

We have shown that there are many superpermutations of length $\sum_{k=1}^{n} n!$. Have we found them all or are there even more?

N. Johnston. Non-uniqueness of minimal superpermutations. *Discrete Mathematics*, 313:1553–1557, 2013. arXiv:1303.4150 [math.CO]

くロト く得ト くヨト くヨトー