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Abstract

We use duality techniques to prove and generalize the cross norm and computable cross
norm criteria for separability of quantum states. While the original proof of the cross norm
criterion is long and involved, our new proof is short and elementary. Furthermore, our
proof generalizes naturally to arbitrary Schmidt number. We also use these techniques to
generalize the computable cross norm criterion to arbitrary Schmidt number and prove some
results of independent interest along the way.
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1. Introduction

In quantum information theory, the distinction between separable states and entangled
states is one of the most fundamental and important concepts. However, the problem of
determining whether or not a given quantum state is entangled, even given a complete
mathematical representation of the state in question, is very difficult and an active area of
research. Some of the more well-known tests for detecting entanglement include the cross
norm criterion [Rud00] (which is very strong, but difficult to apply in practice) and the
computable cross norm criterion [CW03, Rud03] (which is weaker, but easy to apply in
practice).

A notion that generalizes that of separability is that of Schmidt number [THO0], which
is a positive integer that provides a rough measure of “how entangled” a quantum state is.
A state is separable if and only if its Schmidt number is 1, and higher Schmidt numbers
indicate more entanglement. The goal of the present paper is to generalize the cross norm
criterion and the computable cross norm criterion to arbitrary Schmidt number, and to do
so in a way that is reasonably elementary compared to existing proofs.

Our approach is to consider norm duality. After introducing the basics of quantum
entanglement in Section 2, we prove a general norm duality result that is of independant
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interest in Section 3. To demonstrate the power of this duality result, we briefly discuss
some of its consequences, including a characterization of norms that are invariant under
the action of local unitary operators. We then apply our duality result to the S(k)-norm
[JK10, JK11] from quantum information theory, and we see that its dual is the projective
tensor norm [Rud00, Rud05] in Section 4. We then show that this result easily gives the
desired generalization of the cross norm criterion.

Finally, we close in Section 5 by using similar duality techniques to generalize the com-
putable cross norm criterion. We show that, while the standard computable cross norm
criterion depends on the trace norm, its natural generalization depends on the dual of a
norm that can be thought of as a mix between the Frobenius and Ky Fan k-norms. We
show that our criterion is both necessary and sufficient on pure states, and we numerically
analyze its effectiveness in general.

2. Notation and Preliminaries

Here we introduce our notation and terminology. We use H to denote a finite-dimensional
complex Hilbert space. We typically represent vectors v € H using boldface, but if we wish
to emphasize that the vector in question has unit length (with respect to the norm induced
by the inner product), then we use “ket” notation: |v) € H. In this case, we use “bras” to
represent dual (i.e., row) vectors: (v| := |v)*.

The Hilbert spaces of primary interest to us are C" (i.e., n-dimensional complex Euclidean
space) and M, the space of n x n complex matrices equipped with the Hilbert—Schmidt
inner product (A, B) := Tr(A*B). We also consider M,, ® M,, as a Hilbert space with the
same inner product, but when possible we don’t specify a particular Hilbert space at all for
the sake of generality.

A pure quantum state is represented by a unit vector |[v) € C". A pure state |v) € C"®C"
is called separable if it can be written in the form |v) = |a) ®|b) for some |a) € C™, |b) € C",
and it is called entangled otherwise. The Schmidt rank of a pure state |v), which we denote by
SR(|v)), is the least integer k so that we can write [v) = S°F_ ¢;]v;) with each |v;) separable.
It is the case that 1 < SR(|v)) < min{m,n} for all |v) € C™ @ C" and SR(|v)) =1 if and
only if |v) is separable.

While pure states are simple to work with mathematically, not all quantum states are
pure. General (i.e., potentially mized) quantum states are represented by density matrices:
positive semidefinite matrices p = p* € M, satisfying Tr(p) = 1. If |v) represents a pure
state then the projection onto its span, |v)(v|, is its density matrix representation. A general
density matrix p can be written as a convex combination of pure states: p = ). p;|v;) (v;]
with > .p; =1 and p; > 0 for all i. If p can be written in this way with each |v;) separable
then we say that p is separable [Wer89]. More generally, the Schmidt number of p, denoted
SN (p), is the least integer k such that p can be written in this form with each |v;) having
SR(|v;)) <k [THO0]. If SN(p) > 2 then p is called entangled.

An operator Y = Y* € M, ® M, is called k-block positive if (v|Y|v) > 0 whenever
SR(|v)) < k. The sets of k-block positive operators and states with Schmidt number at



most k are dual to each other in the sense that SN(p) < k if and only if Tr(pY) > 0 for all
k-block positive Y [SSZ09].

If we fix 1 < k < min{m,n} then two norms on M,, ® M, that play a key role in the
remainder of this paper are as follows:

1] g0y = sup {\<U|X|w>\ . SR(|v)), SR(jw)) < k} and (1)

1XI], = inf { 3 Jei = X = 3 o] with SR(u)), SR(lwi)) < k Vi), (2)

3 K3

where the supremum (1) is taken over all |v), |w) satisfying the Schmidt rank condition and
the infimum (2) is taken over all decompositions of the indicated form.
Notice that in the & = min{m, n} case we have

[ X[ and - [|x] = [ Xl

'Yamin{m7n} o

HXHS(min{m,n}) - |
where || - || and || - || refer to the operator norm and trace morm, respectively, defined as
follows:

|X|| == sup {’(U|X|w>’} and HXHtT ;= sup {’Tr(XU)‘ : UeM,is unitary}.

The norm (1) was introduced in [JK10, JK11] as a tool for investigating k-block positivity.
In particular, we have the following simple proposition, which was originally proved as [JK10,
Corollary 4.9], but we reprove here for completeness.
Proposition 1. Let Y = Y* € M, ® M,,. If we write Y = ¢l — X with X positive
semidefinite, then Y is k-block positive if and only if ¢ > || X ||sk)-

Proof. Let |v) € C™ @ C" have SR(|v)) < k. Then

(0lY]o) = (v[(el = X)|v) = ¢ = (v]X]v). (3)
By taking the infimum of Equation (3) over all such |v) (and using the easily-verified fact
that the supremum defining the norm (1) is attained when |[v) = |w) when X is positive
semidefinite), the result follows. ]

On the other hand, the norm (2), in the k£ = 1 case, was studied in relation to quantum
entanglement in [Rud00, Rud05] and is called the projective tensor norm. Observe in this
case that it can be written in the following slightly simpler form:

],y = inf { D Jel s X = cludiw] @ o}
—wt {3 Al B, X = A}

Much like || - ||s() characterizes k-block positivity, it is known that || - ||,1 characterizes
separability in the sense that a density matrix p is separable if and only if ||p[,1 = 1.
However, in contrast with the simplicity of the proof of Proposition 1, the proof of this fact
is quite long and complicated. In the next section we introduce norm duality, and show that
it leads to an elementary new proof of (a generalization of) this result.
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3. Dual Norms

Given a norm |||-||| on H (not necessarily equal to the norm induced by the inner product),
the dual norm of |||-||| is defined by

VI = sup { [¢w, v < w < 1} )

For example, when H = M,,, the Frobenius norm is the norm induced by the inner
product and is thus self-dual: || X||F := /Tr(X*X) = || X||%. As a less trivial example, it is
well-known that the operator norm and the trace norm are dual to each other: ||-||° = || |-

The following result allows us to rephrase dual norms, which so far we have written as
the supremum (4), as an infimum. We expect that this result is known, though we have not
been able to find a reference for it.

Theorem 2. Let S C H be a bounded set satisfying span(S) = H and define a norm |||-|||
by

vl = sup { (v, w)| }.
weS
Then ||||||° is given by

|Iv|lI° = inf { Z lci| - v = Zcivi, where ¢; e F,v; € S Vz’},

(2

where the infimum is taken over all such decompositions of v.

We make some observations before proving the result. Firstly, the conditions placed
on S by Theorem 2 are both necessary and sufficient for the quantity |||-||| to be a norm:
boundedness of S ensures that the supremum is finite, and span(S) = H is equivalent to the
statement that [||v]|| = 0 if and only if v = 0. Secondly, every norm on H can be written in
this form: we can always choose S to be the unit ball of the dual norm |||-|||°. However, it
is sometimes useful to make other choices of S such as the set of extreme points of the unit
ball of the dual norm.

Proof of Theorem 2. Begin by noting that if w € S and |||v||| < 1 then |[(v,w)| < 1. It
follows that [||w]||” < 1 whenever w € S. In fact, we now show that |||-|[|” is the largest
norm on H with this property. To this end, let [||-|||, be another norm satisfying |||w]||5 < 1
whenever w € S. Then

vl = sup {|¢v, w) [} < sup {|v, w)] = will < 1 = 1],

Thus [[|-]|| < |||]l,, so by taking duals we see that |||-[||” > [||-]||5, as desired.
For the remainder of the proof, we denote the infimum in the statement of the theorem
by || - |line. Our goal now is to show that: (a) || - [|inf is & norm, (b) || - [|inr satisfies | w||ins < 1

whenever w € S, and (c) || - i is the largest norm satisfying property (b). The fact that
4



|l lline = |||-]l|° will then follow from the fact that |||-|||° is also the largest norm satisfying
property (b).

To see (a) (i.e., to prove that || - ||inf is & norm), we only prove the triangle inequality,
since the other properties are trivial. Fix ¢ > 0 and let v = ) . ¢;v;, w = ). d;w; be
decompositions of v, w with v;, w; € S for all 7, satisfying > . |¢;| < ||V|[ine+¢€ and >, |d;] <
| W ||int + €. Then

1V 4+ Wllar < el + Y 1dil < IV i+ (1 lin + 2¢.

Since € > 0 is arbitrary, the triangle inequality follows, so || - ||inf is & norm.
To see (b) (i.e., to prove that || v|inf < 1 whenever v € §), we simply write v in its trivial
decomposition v = v, which gives ||| < >, ¢c; =c¢1 = 1.

To see (c) (i.e., to prove that || - ||inr is the largest norm on H satisfying condition (b)),
begin by letting |||-|||, be any norm on #H with the property that [[|v]]|, < 1 for all v € S.
Then using the triangle inequality for [||-|||, shows that if v =), ¢;v; is any decomposition

of v with v; € § for all 7, then

g CiV;

i

Ivilly = ‘

<D lailllvilll, < ) lel.
2 { %

Taking the infimum over all such decompositions of v shows that |||v|||, < ||V|lin, Which
completes the proof. O

As an example of an application of Theorem 2, we again consider the operator norm and
trace norm on M,,, which we already noted are dual to each other. The theorem then says
that

)

HXHtT:inf{Z]ci] :X:Zci|wi><vi\}. (6)

3 K3

HXH = Inf { Z leil - X = ZciUi with each U; unitary}, and (5)

The above characterization of || - || is well-known, and the infimum is attained when we
write X in its singular value decomposition. The characterization of || - || is perhaps slightly
less well-known and interesting in its own right. Theorem 2 also generalizes the fact that
the injective and projective tensor norms are dual to each other (see [DFS08, Chapter 1])
and the fact that the 1-norm and co-norm on C" are dual to each other.

As an application of the formula (5) for the operator norm, recall [Bha97, Proposi-
tion 1V.2.4], which says that a norm [||-||| is unitarily-invariant if and only if [||[AX B||| <
A XN Bl for all A, X, B € M,. The standard proof of this fact uses singular values
and thus does not generalize in any natural way to tensor product systems. However, Equa-
tion (5) allows us to easily prove the following natural generalization for norms that are
locally unitarily invariant — that is, norms |[||-||| on M" that satisfy

(@ aU)X(Vie---o V)| =|x]|
5}



for all X € M®" and all unitary operators U;, V; € M, (1 <i <r). Notice that the norms
| - sk and || - ||,% are all locally unitarily invariant (with » = 2), so we believe that norms
with this property play an important role in quantum information theory, and hence that
the following result is an important first step in the understanding of the general behavior
of these norms.

Theorem 3. Let |||-||| be a norm on MZ". Then the following are equivalent:

(a) |||l is locally unitarily invariant.

@)m&h®~~®AﬁXﬂi®~-®BQMS(IIW&MBMNWﬂHﬁrMLYEA@TmMaH
i=1

Proof. The fact that (b) = (a) is straightforward. If we let A;, B; (1 < i <) be unitary,
then

X[ = |44 @ -+ ® ATA)X (B Bf @ - -- @ B.B;) |
<A@ ©A)X(B®---@ B,
< [1X1;
where we used the fact that [|A;|| = ||Bil| = ||Af|| = || B|| = 1 for all i. It follows that
A ® - @A) X(B1®--- @ B)||| = ||| X]||, so |||]||] is locally unitarily invariant.

To see that (a) = (b), write A; = Zj ¢;;Ui; and B; = ), d;Viy with each U;; and
Vie unitary (recall that this is possible since the span of the unitary matrices is all of M,,).
Then

(A @ ®@A)X(Bi®---® B,

= m ((Z c1U1) @ -+ ® (Z erUrj))X<(Z dVi) @@ () dMVM)> 'H

S Z <(H|ng dig, ) ||| (U1, @ -+ @ Uy ) X (Vig, ® -+ © Vi) H)
e
= > (ITleslide )1 X1
AN A
= (TLCS s (i) 111
=1 ¢

where the inequality follows from the triangle inequality, and the equality between the
third and fourth lines follows from local unitary invariance. By taking the infimum over
all decompositions of each A; and B; of the given form and using Equation (5), the result
follows. O



4. The Cross Norm Criterion for Schmidt Number
We begin by showing that the norms (1) and (2) are dual to each other.

Theorem 4. Let X € M,, @ M,,. Then

1x

S(k) — HXHW
Proof. Use Theorem 2 with H = M,, ® M,, and S = {|v)(w| : SR(|v)), SR(|w)) < k}. O

A completely different proof of Theorem 4, based on minimal and maximal operator
spaces, was given in [Joh12]. Indeed, the S(k)-norm is the k-minimal L*-matrix norm on
M, [JKPP11], so the dual of the S(k)-norm is analogously the k-maximal L!-matrix norm
on M, which can be verified to be || - ||

As a result of the duality provided by Theorem 4, we are now in a position to provide an
elementary proof of a generalization of the fact that a density matrix p is separable if and
only if ||p||,,1 = 1 [Rud00], which is known as the cross norm criterion for separability. The
generalization provided by the following theorem shows that the remaining norms || - ||,
characterize Schmidt number in exactly the same way that || -||,1 characterizes separability.

Theorem 5 (Generalized Cross Norm Criterion). Let p € M,, ® M, be a density matriz.
Then SN(p) < k if and only if ||p||yx = 1.

Proof. Note that ||p||,x > ||plle- = 1 for all p, so we only need to show that SN(p) < k if
and only if ||p||,x < 1.

The “only if” implication is trivial, since SN(p) < k implies that we can write p =
> pilvi)(vi| with SR(|v;)) < k for all 4 and ), p; = 1. By comparing this decomposition of
p with the definition of the norm (2), the implication follows.

For the “if” direction of the proof, suppose ||p|l,+ < 1 and let Y = Y* € M,, ® M, be
k-block positive. If we write Y = cI — X with X positive semidefinite then ¢ > || X||sx), by
Proposition 1. We then have

Tr(pY) = Tr(p(c — X)) =c— Tr(pX) > c — HX”S(k) >0,

where we used the duality of Theorem 4 in the first inequality. Since Y is an arbitrary
k-block positive operator, it follows that SN(p) < k, which completes the proof. [

5. The Computable Cross Norm Criterion for Schmidt Number

While Theorem 5 is interesting theoretically, it suffers from the problem of being “too
strong” of a test for Schmidt number. It determines Schmidt number exactly, so it seems
doubtful that we could actually compute the norm || - ||, and put the theorem to use in
practice. We thus would like to weaken Theorem 5 in a sense — we would like a similar test
for Schmidt number that is easy to apply in practice, at the expense of being weaker (i.e.,
only being a necessary or sufficient condition for Schmidt number, but not both).
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In the & = 1 case (i.e., the case of separability), the computable cross norm criterion
[Rud03] (sometimes called the realignment criterion [CWO03]) provides exactly such a test.
For the remainder of this section, we fix an orthonormal basis {|i)}?_; of C". If we define
the realignment map L : My, ,, @ M,y — M,,, ® M, s by L(|i){(j| @ |k){£]) = [i){k] @ |7) (/|
and extending linearly, it is not difficult to verify that ||[L(X)|,1 = ||X]|,1 for all X. It
follows immediately that if p is separable then || L(p)||+ < [|L(p)|l+1 = ||pll4,1 = 1, where the
final equality comes from Theorem 5.

The fact that separability implies ||L(p)|s < 1 is the computable cross norm criterion.
In fact, it is straightforward to generalize this result to arbitrary Schmidt number — one
can easily show that ||p|l,1 < k whenever SN(p) < k, which leads to the following test for
Schmidt number: if SN(p) < k then ||L(p)]+ < k.

However, this generalization of the computable cross norm criterion is not particularly
strong. For example, while the computable cross norm criterion is both necessary and
sufficient on pure states [CW03, Proposition 1], this generalization is only necessary, but
not sufficient, when k > 2. To see this claim, define

) :=+/1 = (n—1)2[1) @ 1) ”Z i) ® |i) € C" @ C"

for some small ¢ > 0. Clearly SR(|v)) = n regardless of ¢, but a simple calculation shows
that

|Z(Jv) (@), = (n—1De+/1—(n— 1)82)27

which decreases toward 1 as € — 0. In other words, it is possible that || L(|v)(v])||s# =~ 1 even
though SR(|v)) = n, which demonstrates that this generalization of the computable cross
norm criterion is not even close to being sufficient, even on pure states.

In order to fix this problem and provide much stronger generalization of the computable
cross norm criterion, we again use norm duality techniques. First, consider the following
norm on M,,, which can be thought of as a hybrid of the Frobenius norm (i.e., the Schatten
2-norm) and the Ky Fan k-norm:

HXH(M) = sup {|Tr(XY)‘ srank(Y) < k,

Yl <1} =

where || - || denotes the Frobenius norm and o; > 09 > -+ > 0, > 0 are the ordered
singular values of X. Our generalization of the computable cross norm criterion involves the
dual of these norms, which we characterize at the end of this section.

Theorem 6 (Generalized Computable Cross Norm Criterion). If p € M,,®M, has SN(p) <
k then 1(0) e < 1



Proof. Suppose SN(p) < k and begin by writing p as a convex combination of projections
onto states with Schmidt rank no greater than k:

k
p=D 1Y i) (viel © [wig) (wiel

i jo=1

Then

L(p) = Zpi (Z Oéij|?)z‘j><w—ij’> ® <Z Oéwm@l)id) ;

where the superscript bars indicate complex conjugation in the same basis used to define
the realignment map L. L

If we define A; := 25:1 ij|vii) (wi;] then we have L(p) = Y, p;A; ® A;, where rank(A;) <
k and || A;||p = 1 for all i. In particular then, we have L(p) = >, p; B;, where rank(B;) < k?
and || B;||r = 1 for all 7. Let |[||-]|| be a norm with the property that |||.X ||| = || X || for all X
with rank(X) < k2. Then

ool - |

DBl <> pllBill =Y _pillBill = pi =1 (7)

All that remains is to make a suitable choice for [||-]||, so that this test for Schmidt number
is as strong as possible. To this end, notice that || - ||(42,2) is clearly the smallest norm with
the required rank property. Also notice that, because the Frobenius norm is self-dual (i.e.,
|17 =1+ ll7), [ - [I{42 o) must satisfy the same rank property, and in particular must be the

largest such matrix norm. We thus choose |||-[|| = || - [|{;2 2), which completes the proof. [

Notice that when k =1, || - [|(x2,2) is the operator norm, so || - [|¢;2 ) = || - [|t and hence
Theorem 6 gives the standard realignment criterion in this case. On the other extreme, if
k =min{m, n} then || |[,2 5 = || - [[r. Because L preserves the Frobenius norm, Theorem 6
then simply says that ||p||r < 1 for all quantum states p, which is trivially true because
llplle < |lplle = 1. The conditions given for the remaining values of k are all non-trivial, yet
easy to compute.

Also notice that [|-[|x2,2) < Kl|[[, so |[-[|er < K[| [|342,2)- In other words, Theorem 6 provides
a test for Schmidt number that is strictly stronger than the previously-noted criterion that
says ||L(p)|le < k whenever SN(p) < k. Furthermore, the test provided by Theorem 6 is
strong enough that it is both necessary and sufficient on pure states. That is, SR(|v)) < k if
and only if [|L(|v){v])||(;2.4) < 1. To see this, it suffices to notice that Inequality (7) becomes
an equality in this case (since there is only one term in the sum) and || X||7;2 5) > 1 whenever
| X||F =1 and rank(X) > k2.

We now turn our attention to the problem of characterizing the norm || - [[g, 5. It follows
immediately from Theorem 2 that

|x][5, ,, = inf { S [¥illp s X =D Vio with rank(¥) < & Vi},
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where the infimum is taken over all such decompositions of X. While this characterization
is useful theoretically, it provides very little insight into its calculation. Since we claimed
that our generalization of the computable cross norm criterion is useful in practice, we need
to show how to calculate || - [|¢;25). The following theorem, proved in [MF85], makes this
computation explicit.

Theorem 7. Let o1 > 05 > --- > 0, > 0 be the ordered singular values of X € M,,. Let r

be the largest index 1 < r < k such that o, > Zin:l?_{:fn} oi/(k—r1) (or take r = 0 if no such

index exists). Also define ¢ := Zf“:lfi”f"} oi/(k—r). Then

1x

(()k,2) = Z o? + (k —r)a2.
=1

Using this result, we have tested the criterion provided by Theorem 6 numerically and
found that the test is strongest on density matrices of small rank. Indeed, this is expected,
as we saw that it is both necessary and sufficient on pure states (i.e., density matrices of
rank 1), and the weakness of the criterion comes from Inequality (7), which is weaker when
there are more terms in the sum (i.e., when the density matrix has high rank).

More specifically, for each 1 < r < 36, we randomly generated 10° Haar-uniform pure
states in C® ® C® ® C" and traced out the third subsystem, resulting in a random rank-r
density matrix in Mg ® Mg. The rth row of Table 1 lists the percentage of these states that
violated the generalized computable cross norm criterion of Theorem 6 with k£ = 1,2, 3,4,
and 5.

Observe that every entry in the first row of Table 1 is 100%, a fact that is expected
since almost all pure states have maximal Schmidt rank (i.e., Schmidt rank 6) and, as we
mentioned earlier, Theorem 6 is both necessary and sufficient in this case. The behavior
of the first column is also expected: it was shown in [ANI12] that (asymptotically) the
computable cross norm criterion typically detects entanglement in states generated in this
way when r < (8/37)?n?, which is approximately equal to 26 in this case.
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