Duality of Entanglement Norms

Nathaniel Johnston based on joint work with David W. Kribs

WONRA 2012, Kaohsiung, Taiwan

July 11, 2012

< ロ > < 同 > < 回 > < 回 > < 回 > <

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Notation and Setting

We use \mathcal{H} to denote a finite-dimensional Hilbert space over a field \mathbb{F} (either \mathbb{R} or \mathbb{C}). Some examples...

- \mathbb{C}^n , complex Euclidean space with the usual inner product;
- M_n , the $n \times n$ complex matrices with the Hilbert–Schmidt inner product

$$\langle A|B \rangle := \operatorname{Tr}(A^{\dagger}B);$$
 and

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Notation and Setting

We use \mathcal{H} to denote a finite-dimensional Hilbert space over a field \mathbb{F} (either \mathbb{R} or \mathbb{C}). Some examples...

- \mathbb{C}^n , complex Euclidean space with the usual inner product;
- M_n , the $n \times n$ complex matrices with the Hilbert–Schmidt inner product

$$\langle A|B \rangle := \operatorname{Tr}(A^{\dagger}B);$$
 and

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < 回 > <

Our Notation and Setting

We use \mathcal{H} to denote a finite-dimensional Hilbert space over a field \mathbb{F} (either \mathbb{R} or \mathbb{C}). Some examples...

- \mathbb{C}^n , complex Euclidean space with the usual inner product;
- M_n , the $n \times n$ complex matrices with the Hilbert–Schmidt inner product

$$\left< A | B \right> := \operatorname{Tr}(A^{\dagger}B);$$
 and

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

Our Notation and Setting

We use \mathcal{H} to denote a finite-dimensional Hilbert space over a field \mathbb{F} (either \mathbb{R} or \mathbb{C}). Some examples...

- \mathbb{C}^n , complex Euclidean space with the usual inner product;
- M_n , the $n \times n$ complex matrices with the Hilbert–Schmidt inner product

$$\left< A | B \right> := \operatorname{Tr}(A^{\dagger}B);$$
 and

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

Quantum States

A pure quantum state is a unit vector $|v\rangle \in \mathbb{C}^n$.

A mixed quantum state is a positive semidefinite matrix $ho \in M_n^H$ with ${
m Tr}(
ho)=1.$

Mixed states can be written as convex combinations of projections onto pure states:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}|.$$

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

イロト イポト イヨト イヨト

Quantum States

A pure quantum state is a unit vector $|v\rangle \in \mathbb{C}^{n}$.

A mixed quantum state is a positive semidefinite matrix $\rho \in M_n^H$ with $\text{Tr}(\rho) = 1$.

Mixed states can be written as convex combinations of projections onto pure states:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}|.$$

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < □ > <

Quantum States

A pure quantum state is a unit vector $|v\rangle \in \mathbb{C}^{n}$.

A mixed quantum state is a positive semidefinite matrix $\rho \in M_n^H$ with $\text{Tr}(\rho) = 1$.

Mixed states can be written as convex combinations of projections onto pure states:

$$\rho = \sum_{i} p_{i} |\mathbf{v}_{i}\rangle \langle \mathbf{v}_{i}|.$$

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

・ロト ・ 同ト ・ ヨト ・ ヨト -

Separability and Entanglement

A pure state $|v\rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ is called **separable** if there exist $|a\rangle \in \mathbb{C}^m$ and $|b\rangle \in \mathbb{C}^n$ so that

 $|v\rangle = |a\rangle \otimes |b\rangle.$

A mixed state $\rho \in M_m^H \otimes M_n^H$ is called **separable** if it can be written as a convex combination of separable pure states:

$$ho = \sum_i p_i |v_i
angle \langle v_i|$$
 with each $|v_i
angle$ separable

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

・ロト ・ 同ト ・ ヨト ・ ヨト -

Separability and Entanglement

A pure state $|v\rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ is called **separable** if there exist $|a\rangle \in \mathbb{C}^m$ and $|b\rangle \in \mathbb{C}^n$ so that

 $|v\rangle = |a\rangle \otimes |b\rangle.$

A mixed state $\rho \in M_m^H \otimes M_n^H$ is called **separable** if it can be written as a convex combination of separable pure states:

$$ho = \sum_i {m p}_i |m v_i
angle \langlem v_i| \;\;$$
 with each $|m v_i
angle$ separable.

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

イロト イポト イヨト イヨト

Schmidt Decomposition Theorem

Theorem (Schmidt decomposition)

For each $|v\rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ there exists:

- a positive integer $k \leq \min\{m, n\}$;
- positive real constants $\{\alpha_i\}_{i=1}^k$ with $\sum_{i=1}^k \alpha_i^2 = 1$; and

• orthonormal sets $\{|a_i\rangle\}_{i=1}^k \subset \mathbb{C}^m$ and $\{|b_i\rangle\}_{i=1}^k \subset \mathbb{C}^n$ such that

$$|\mathbf{v}\rangle = \sum_{i=1}^{k} \alpha_i |\mathbf{a}_i\rangle \otimes |\mathbf{b}_i\rangle.$$

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

・ロト ・四ト ・モト・ ・モト

Schmidt Rank

- $SR(|v\rangle) = 1$ if and only if $|v\rangle$ is separable.
- If $SR(|v\rangle) \ge 2$ then $|v\rangle$ is called **entangled**.
- The constants {α_i}^k_{i=1} are called the Schmidt coefficients of |ν⟩.

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Schmidt Rank

- $SR(|v\rangle) = 1$ if and only if $|v\rangle$ is separable.
- If $SR(|v\rangle) \ge 2$ then $|v\rangle$ is called entangled.
- The constants {α_i}^k_{i=1} are called the Schmidt coefficients of |ν⟩.

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < 回 > <

Schmidt Rank

- $SR(|v\rangle) = 1$ if and only if $|v\rangle$ is separable.
- If $SR(|v\rangle) \ge 2$ then $|v\rangle$ is called entangled.
- The constants {α_i}^k_{i=1} are called the Schmidt coefficients of |ν⟩.

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

・ロト ・ 一 ト ・ モ ト ・ モ ト

Schmidt Rank

- $SR(|v\rangle) = 1$ if and only if $|v\rangle$ is separable.
- If $SR(|v\rangle) \ge 2$ then $|v\rangle$ is called **entangled**.
- The constants {α_i}^k_{i=1} are called the Schmidt coefficients of |ν⟩.

Schmidt Number

The **Schmidt number** of a mixed state $\rho \in M_m^H \otimes M_n^H$, denoted $SN(\rho)$, is the least k such that ρ can be written as a convex combination of pure states with Schmidt rank $\leq k$:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}| \text{ with } SR(|v_{i}\rangle) \leq k \text{ for all } i.$$

- $SN(\rho) = 1$ if and only if ρ is separable.
- If $SN(\rho) \ge 2$ then ρ is called entangled.
- $SN(|v\rangle\langle v|) = SR(|v\rangle)$ for all $|v\rangle$.

Introduction Our Notation and Setting Norms Quantum States Consequences of Duality Bibliography Block Positivity and Entanglement Witnesses

Schmidt Number

The **Schmidt number** of a mixed state $\rho \in M_m^H \otimes M_n^H$, denoted $SN(\rho)$, is the least k such that ρ can be written as a convex combination of pure states with Schmidt rank $\leq k$:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}| \text{ with } SR(|v_{i}\rangle) \leq k \text{ for all } i.$$

- $SN(\rho) = 1$ if and only if ρ is separable.
- If $SN(\rho) \ge 2$ then ρ is called entangled.
- $SN(|v\rangle\langle v|) = SR(|v\rangle)$ for all $|v\rangle$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Introduction Our Notation and Setting Norms Quantum States Consequences of Duality Bibliography Block Positivity and Entanglement Witnesses

Schmidt Number

The **Schmidt number** of a mixed state $\rho \in M_m^H \otimes M_n^H$, denoted $SN(\rho)$, is the least k such that ρ can be written as a convex combination of pure states with Schmidt rank $\leq k$:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}| \text{ with } SR(|v_{i}\rangle) \leq k \text{ for all } i.$$

- $SN(\rho) = 1$ if and only if ρ is separable.
- If $SN(\rho) \ge 2$ then ρ is called **entangled**.

• $SN(|v\rangle\langle v|) = SR(|v\rangle)$ for all $|v\rangle$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Schmidt Number

The **Schmidt number** of a mixed state $\rho \in M_m^H \otimes M_n^H$, denoted $SN(\rho)$, is the least k such that ρ can be written as a convex combination of pure states with Schmidt rank $\leq k$:

$$\rho = \sum_{i} p_{i} |v_{i}\rangle \langle v_{i}| \text{ with } SR(|v_{i}\rangle) \leq k \text{ for all } i.$$

- $SN(\rho) = 1$ if and only if ρ is separable.
- If $SN(\rho) \ge 2$ then ρ is called **entangled**.

•
$$SN(|v\rangle\langle v|) = SR(|v\rangle)$$
 for all $|v\rangle$.

・ロト ・ 同ト ・ ヨト ・ ヨト -

Our Notation and Setting Quantum States Schmidt Rank and Schmidt Number Block Positivity and Entanglement Witnesses

< ロ > < 同 > < 回 > < 回 > < 回 > <

Block Positivity

An operator $X \in M_m^H \otimes M_n^H$ is called *k*-block positive if $\langle v|X|v \rangle \geq 0$ for all $|v \rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ with $SR(|v \rangle) \leq k$.

- If X is k-block positive but not positive semidefinite, it is called a k-entanglement witness.
- SN(ρ) > k if and only if there exists a k-entanglement witness with Tr(Xρ) < 0.
- The cone of k-block positive operators is dual to the set of ρ with $SN(\rho) \leq k$.

Block Positivity

An operator $X \in M_m^H \otimes M_n^H$ is called *k*-block positive if $\langle v|X|v \rangle \geq 0$ for all $|v \rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ with $SR(|v \rangle) \leq k$.

- If X is k-block positive but not positive semidefinite, it is called a k-entanglement witness.
- SN(ρ) > k if and only if there exists a k-entanglement witness with Tr(Xρ) < 0.
- The cone of k-block positive operators is dual to the set of ρ with SN(ρ) ≤ k.

Block Positivity

An operator $X \in M_m^H \otimes M_n^H$ is called *k*-block positive if $\langle v|X|v \rangle \geq 0$ for all $|v \rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ with $SR(|v \rangle) \leq k$.

- If X is k-block positive but not positive semidefinite, it is called a k-entanglement witness.
- SN(ρ) > k if and only if there exists a k-entanglement witness with Tr(Xρ) < 0.
- The cone of k-block positive operators is dual to the set of ρ with SN(ρ) ≤ k.

Block Positivity

An operator $X \in M_m^H \otimes M_n^H$ is called *k*-block positive if $\langle v|X|v \rangle \geq 0$ for all $|v \rangle \in \mathbb{C}^m \otimes \mathbb{C}^n$ with $SR(|v \rangle) \leq k$.

- If X is k-block positive but not positive semidefinite, it is called a k-entanglement witness.
- SN(ρ) > k if and only if there exists a k-entanglement witness with Tr(Xρ) < 0.
- The cone of k-block positive operators is dual to the set of ρ with SN(ρ) ≤ k.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Dual Norms

The dual of a norm $||\!|\!|\!||\!|$ on $\mathcal H$ is defined as follows:

$$\left\|\left\|\mathbf{v}\right\|\right|^{\circ} := \sup_{\mathbf{w}\in\mathcal{H}} \Big\{ \left| \langle \mathbf{w} | \mathbf{v} \rangle \right| : \left\|\left\|\mathbf{w}\right\|\right\| \leq 1 \Big\}.$$

For example, some important norms on M_n include...

• the operator norm

$$||A|| := \sup \{ |\langle v|A|w \rangle| \} = \sigma_1(A),$$

(日) (四) (三) (三)

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Dual Norms

The dual of a norm $\| \cdot \|$ on \mathcal{H} is defined as follows:

$$\left\|\left\|\mathbf{v}\right\|\right|^{\circ} := \sup_{\mathbf{w}\in\mathcal{H}} \Big\{ \left| \langle \mathbf{w} | \mathbf{v} \rangle \right| : \left\|\left\|\mathbf{w}\right\|\right\| \leq 1 \Big\}.$$

For example, some important norms on M_n include...

• the operator norm

$$\|A\| := \sup \left\{ |\langle v|A|w \rangle| \right\} = \sigma_1(A),$$

イロト イポト イヨト イヨト

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Dual Norms

• the Frobenius norm

$$\|A\|_F := \sqrt{\operatorname{Tr}(A^{\dagger}A)} = \sqrt{\sum_{i=1}^n \sigma_i(A)^2} = \|A\|_F^{\circ}, \text{ and}$$

• the trace norm

$$||A||_{tr} := \sum_{i=1}^{n} \sigma_i(A) = ||A||^{\circ}.$$

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Dual Norms

• the Frobenius norm

$$\|A\|_F := \sqrt{\operatorname{Tr}(A^{\dagger}A)} = \sqrt{\sum_{i=1}^n \sigma_i(A)^2} = \|A\|_F^{\circ}, \text{ and}$$

• the trace norm

$$\left\|A\right\|_{tr} := \sum_{i=1}^{n} \sigma_i(A) = \left\|A\right\|^{\circ}.$$

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

A Ky Fan-Type Duality Result

Given a fixed $1 \le k \le n$, we define the (k, 2)-norm on M_n as follows:

$$\|A\|_{(k,2)} := \sqrt{\sum_{i=1}^k \sigma_i(A)^2}.$$

• Equals the operator norm when k = 1 and the Frobenius norm when k = n.

• Their dual norms are a bit of a mouthful...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

A Ky Fan-Type Duality Result

Given a fixed $1 \le k \le n$, we define the (k, 2)-norm on M_n as follows:

$$\|A\|_{(k,2)} := \sqrt{\sum_{i=1}^k \sigma_i(A)^2}.$$

• Equals the operator norm when k = 1 and the Frobenius norm when k = n.

• Their dual norms are a bit of a mouthful...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

A Ky Fan-Type Duality Result

Given a fixed $1 \le k \le n$, we define the (k, 2)-norm on M_n as follows:

$$\|A\|_{(k,2)} := \sqrt{\sum_{i=1}^k \sigma_i(A)^2}.$$

- Equals the operator norm when k = 1 and the Frobenius norm when k = n.
- Their dual norms are a bit of a mouthful...

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

A Ky Fan-Type Duality Result

Theorem

Let r be the largest index $1 \le r < k$ such that $\sigma_r > \sum_{i=r+1}^{\min\{m,n\}} \sigma_i/(k-r)$ (or take r = 0 if no such index exists). Also define $\tilde{\sigma} := \sum_{i=r+1}^{\min\{m,n\}} \sigma_i/(k-r)$. Then

$$\|A\|_{(k,2)}^{\circ} = \sqrt{\sum_{i=1}^{r} \sigma_i^2 + (k-r)\tilde{\sigma}^2}.$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

S(k)-Norms and Product Numerical Radius

We now introduce a family of norms that characterize k-block positivity. For $X \in M_m \otimes M_n$ and $Y \in M_m^H \otimes M_n^H$ we define

$$\begin{split} \|X\|_{S(k)} &:= \sup_{|v\rangle, |w\rangle} \left\{ \left| \langle w|X|v\rangle \right| : SR(|v\rangle), SR(|w\rangle) \le k \right\} \text{ and} \\ r_k^{\otimes}(Y) &:= \sup_{|v\rangle} \left\{ \left| \langle v|Y|v\rangle \right| : SR(|v\rangle) \le k \right\}. \end{split}$$

Any Z ∈ M^H_m ⊗ M^H_n can be written in the form Z = cl − X for some X ∈ (M_m ⊗ M_n)⁺. Then Z is k-block positive if and only if c ≥ ||X||_{S(k)} = r[⊗]_k(X).

・ロト ・同ト ・ヨト ・ヨト

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

S(k)-Norms and Product Numerical Radius

We now introduce a family of norms that characterize k-block positivity. For $X \in M_m \otimes M_n$ and $Y \in M_m^H \otimes M_n^H$ we define

$$\begin{split} \big\|X\big\|_{\mathcal{S}(k)} &:= \sup_{|\nu\rangle, |w\rangle} \Big\{ \big|\langle w|X|\nu\rangle\big| : \mathcal{SR}(|\nu\rangle), \mathcal{SR}(|w\rangle) \le k \Big\} \text{ and } \\ r_k^{\otimes}(Y) &:= \sup_{|\nu\rangle} \Big\{ \big|\langle v|Y|\nu\rangle\big| : \mathcal{SR}(|\nu\rangle) \le k \Big\}. \end{split}$$

Any Z ∈ M^H_m ⊗ M^H_n can be written in the form Z = cl − X for some X ∈ (M_m ⊗ M_n)⁺. Then Z is k-block positive if and only if c ≥ ||X||_{S(k)} = r[⊗]_k(X).

・ロト ・同ト ・ヨト ・ヨト

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

S(k)-Norms and Product Numerical Radius

We now introduce a family of norms that characterize k-block positivity. For $X \in M_m \otimes M_n$ and $Y \in M_m^H \otimes M_n^H$ we define

$$\begin{split} \big\|X\big\|_{\mathcal{S}(k)} &:= \sup_{|\nu\rangle, |w\rangle} \Big\{ \big|\langle w|X|\nu\rangle\big| : \mathcal{SR}(|\nu\rangle), \mathcal{SR}(|w\rangle) \le k \Big\} \text{ and } \\ r_k^{\otimes}(Y) &:= \sup_{|\nu\rangle} \Big\{ \big|\langle v|Y|\nu\rangle\big| : \mathcal{SR}(|\nu\rangle) \le k \Big\}. \end{split}$$

Any Z ∈ M^H_m ⊗ M^H_n can be written in the form Z = cI − X for some X ∈ (M_m ⊗ M_n)⁺. Then Z is k-block positive if and only if c ≥ ||X||_{S(k)} = r[⊗]_k(X).

イロト イポト イヨト イヨト

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Projective Tensor Norm and Robustness of Entanglement

For $X \in M_m \otimes M_n$ and $Y \in M_m^H \otimes M_n^H$ we define

$$egin{aligned} ig\|Xig\|_{\gamma,k} &:= \inf \Big\{\sum_i |c_i| : X = \sum_i c_i |v_i
angle \langle w_i| \ & ext{with } SR(|v_i
angle), SR(|w_i
angle) \leq k \; orall \, i \Big\}, ext{ and } \end{aligned}$$

$$R_k(Y) := \inf \Big\{ \sum_i |c_i| : Y = \sum_i c_i |v_i\rangle \langle v_i| \text{ with } SR(|v_i\rangle) \leq k \ orall i \Big\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Projective Tensor Norm and Robustness of Entanglement

For $X \in M_m \otimes M_n$ and $Y \in M_m^H \otimes M_n^H$ we define

$$egin{aligned} ig\|Xig\|_{\gamma,k} &:= \inf \Big\{\sum_i |c_i| : X = \sum_i c_i |v_i
angle \langle w_i| \ & ext{with } SR(|v_i
angle), SR(|w_i
angle) \leq k \ orall \, i \Big\}, ext{ and } \end{aligned}$$

$$R_k(Y) := \inf \Big\{ \sum_i |c_i| : Y = \sum_i c_i |v_i\rangle \langle v_i| \text{ with } SR(|v_i\rangle) \le k \, \forall \, i \Big\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Projective Tensor Norm and Robustness of Entanglement

In the k = 1 case, we have

$$||X||_{\gamma,1} := \inf \Big\{ \sum_{i} ||A_i||_{tr} ||B_i||_{tr} : X = \sum_{i} A_i \otimes B_i \Big\}.$$

- Rudolph showed (2000) that ρ is separable if and only if $\|\rho\|_{\gamma,1} = 1$ (this is the cross norm criterion for separability).
- Also, R₁(ρ) = 2E_R(ρ) + 1, where E_R is the robustness of entanglement:

$$E_R(
ho) := \inf \{ s :
ho + s\sigma \text{ is separable} \},$$

where the infimum is taken over all separable σ .

< ロ > (同 > (回 > (回 >))

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Projective Tensor Norm and Robustness of Entanglement

In the k = 1 case, we have

$$||X||_{\gamma,1} := \inf \Big\{ \sum_{i} ||A_i||_{tr} ||B_i||_{tr} : X = \sum_{i} A_i \otimes B_i \Big\}.$$

- Rudolph showed (2000) that ρ is separable if and only if $\|\rho\|_{\gamma,1} = 1$ (this is the cross norm criterion for separability).
- Also, R₁(ρ) = 2E_R(ρ) + 1, where E_R is the robustness of entanglement:

$$E_R(
ho) := \inf \{ s :
ho + s\sigma \text{ is separable} \},$$

where the infimum is taken over all separable σ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Projective Tensor Norm and Robustness of Entanglement

In the k = 1 case, we have

$$||X||_{\gamma,1} := \inf \Big\{ \sum_{i} ||A_i||_{tr} ||B_i||_{tr} : X = \sum_{i} A_i \otimes B_i \Big\}.$$

- Rudolph showed (2000) that ρ is separable if and only if $\|\rho\|_{\gamma,1} = 1$ (this is the cross norm criterion for separability).
- Also, R₁(ρ) = 2E_R(ρ) + 1, where E_R is the robustness of entanglement:

$$E_R(\rho) := \inf \{ s : \rho + s\sigma \text{ is separable} \},\$$

where the infimum is taken over all separable σ .

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

Dual Norms A Ky Fan-Type Duality Result Entanglement Norms

Duality of Entanglement Norms

Theorem

Let
$$X \in M_m \otimes M_n$$
 and $Y \in M_m^H \otimes M_n^H$. Then
 $\|X\|_{\mathcal{S}(k)}^{\circ} = \|X\|_{\gamma,k}$ and $r_k^{\otimes}(Y)^{\circ} = R_k(Y)$.

イロト イポト イヨト イヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Cross Norm Criterion

Theorem

Let $\rho \in M_m \otimes M_n$ be a density matrix. Then $SN(\rho) \leq k$ if and only if $\|\rho\|_{\gamma,k} = 1$ if and only if $R_k(\rho) = 1$.

• The proof is elementary and only a couple lines long.

イロト イポト イヨト イヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Cross Norm Criterion

Theorem

Let $\rho \in M_m \otimes M_n$ be a density matrix. Then $SN(\rho) \leq k$ if and only if $\|\rho\|_{\gamma,k} = 1$ if and only if $R_k(\rho) = 1$.

• The proof is elementary and only a couple lines long.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Values on Pure States

Schmidt number is easy to determine for pure states, so we might hope that these norms are easy to compute for pure states too.

Suppose $|v\rangle$ has Schmidt coefficients $\alpha_1 \ge \alpha_2 \ge \ldots \ge 0$. Then

$$\left\| |v\rangle \langle v| \right\|_{\mathcal{S}(k)} = \sum_{i=1}^{k} \alpha_i^2.$$

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Values on Pure States

Schmidt number is easy to determine for pure states, so we might hope that these norms are easy to compute for pure states too.

Suppose $|v\rangle$ has Schmidt coefficients $\alpha_1 \geq \alpha_2 \geq \ldots \geq 0$. Then

$$\||\mathbf{v}\rangle\langle\mathbf{v}|\|_{\mathcal{S}(k)} = \sum_{i=1}^{k} \alpha_i^2.$$

・ロト ・同ト ・ヨト ・ヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Values on Pure States

From the Ky Fan-type duality result from earlier, we get $||v\rangle\langle v|||_{\gamma,k}$. In particular, let r be the largest index $1 \leq r < k$ such that $\alpha_r > \sum_{i=r+1}^{\min\{m,n\}} \alpha_i/(k-r)$ (or take r = 0 if no such index exists) and define $\tilde{\alpha} := \sum_{i=r+1}^{\min\{m,n\}} \alpha_i/(k-r)$. Then

$$\||\mathbf{v}\rangle\langle\mathbf{v}|\|_{\gamma,k} = \sum_{i=1}^{r} \alpha_i^2 + (k-r)\tilde{\alpha}^2.$$

When k = 1, this simiplifies to

$$\left\| |v\rangle \langle v| \right\|_{\gamma,1} = \left(\sum_{i=1}^{\min\{m,n\}} \alpha_i \right)^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

イロト イポト イヨト イヨト

Values on Pure States

From the Ky Fan-type duality result from earlier, we get $||v\rangle\langle v|||_{\gamma,k}$. In particular, let r be the largest index $1 \leq r < k$ such that $\alpha_r > \sum_{i=r+1}^{\min\{m,n\}} \alpha_i/(k-r)$ (or take r = 0 if no such index exists) and define $\tilde{\alpha} := \sum_{i=r+1}^{\min\{m,n\}} \alpha_i/(k-r)$. Then

$$\||\mathbf{v}\rangle\langle\mathbf{v}|\|_{\gamma,k} = \sum_{i=1}^r \alpha_i^2 + (k-r)\tilde{\alpha}^2.$$

When k = 1, this simiplifies to

$$\left\| |\mathbf{v}\rangle\langle\mathbf{v}| \right\|_{\gamma,1} = \left(\sum_{i=1}^{\min\{m,n\}} \alpha_i\right)^2$$

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

An Open Question

What about $R_k(|v\rangle\langle v|)$? We don't know!

Our best guess is that $R_k(|v\rangle\langle v|) = 2 ||v\rangle\langle v||_{\gamma,k} - 1.$

イロト イポト イヨト イヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

An Open Question

What about $R_k(|v\rangle\langle v|)$? We don't know!

Our best guess is that $R_k(|v\rangle\langle v|) = 2 ||v\rangle\langle v||_{\gamma,k} - 1.$

イロト イポト イヨト イヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

The realignment map is the linear map $L: M_n \otimes M_n \to M_n \otimes M_n$ defined by $L(|i\rangle\langle j| \otimes |k\rangle\langle \ell|) = |i\rangle\langle k| \otimes |j\rangle\langle \ell|$.

The **realignment criterion** for separability says that if ρ is separable, then $||L(\rho)||_{tr} \leq 1$. How does this generalize?

The "easy" generalization is that if $SN(\rho) \le k$ then $||L(\rho)||_{tr} \le k$. This is true! But it is unsatisfying...

イロト イポト イヨト イヨト

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

The realignment map is the linear map $L: M_n \otimes M_n \to M_n \otimes M_n$ defined by $L(|i\rangle\langle j| \otimes |k\rangle\langle \ell|) = |i\rangle\langle k| \otimes |j\rangle\langle \ell|$.

The realignment criterion for separability says that if ρ is separable, then $\|L(\rho)\|_{tr} \leq 1$. How does this generalize?

The "easy" generalization is that if $SN(\rho) \le k$ then $||L(\rho)||_{tr} \le k$. This is true! But it is unsatisfying...

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

The realignment map is the linear map $L: M_n \otimes M_n \to M_n \otimes M_n$ defined by $L(|i\rangle\langle j| \otimes |k\rangle\langle \ell|) = |i\rangle\langle k| \otimes |j\rangle\langle \ell|$.

The realignment criterion for separability says that if ρ is separable, then $\|L(\rho)\|_{tr} \leq 1$. How does this generalize?

The "easy" generalization is that if $SN(\rho) \le k$ then $||L(\rho)||_{tr} \le k$. This is true! But it is unsatisfying...

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

Theorem

If $\rho \in M_m \otimes M_n$ has $SN(\rho) \leq k$ then $\|L(\rho)\|_{(k^2,2)}^{\circ} \leq 1$.

- Strictly stronger than the $||L(\rho)||_{tr} \leq k$ criterion.
- It is both necessary and sufficient for pure states.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

Theorem

If $\rho \in M_m \otimes M_n$ has $SN(\rho) \leq k$ then $\|L(\rho)\|_{(k^2,2)}^{\circ} \leq 1$.

• Strictly stronger than the $||L(\rho)||_{tr} \leq k$ criterion.

• It is both necessary and sufficient for pure states.

・ロト ・ 同ト ・ ヨト ・ ヨト -

Generalizing the Cross Norm Criterion Values on Pure States Generalizing the Realignment Criterion

Generalizing the Realignment Criterion

Theorem

If $\rho \in M_m \otimes M_n$ has $SN(\rho) \leq k$ then $\|L(\rho)\|_{(k^2,2)}^{\circ} \leq 1$.

- Strictly stronger than the $||L(\rho)||_{tr} \leq k$ criterion.
- It is both necessary and sufficient for pure states.

・ロト ・ 同ト ・ ヨト ・ ヨト -

Bibliography

- Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, M.-D. Choi, and K. Życzkowski. Product numerical range in a space with tensor product structure. *Linear Algebra Appl.*, 434:327–342, 2011.
- N. Johnston and D. W. Kribs. A family of norms with applications in quantum information theory. *J. Math. Phys.*, 51:082202, 2010.
- O. Rudolph. A separability criterion for density operators. J. Phys. A: Math. Gen., 33:3951–3955, 2000.
- G. Vidal and R. Tarrach. Robustness of entanglement. *Phys. Rev. A*, 59:141–155, 1999.

ヘロト ヘポト ヘヨト ヘヨト