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In recent years, several measures have been proposed for characterizing the coherence of a given quantum
state. We derive several results that illuminate how these measures behave when restricted to pure states. No-
tably, we present an explicit characterization of the closest incoherent state to a given pure state under the trace
distance measure of coherence, and we affirm a recent conjecture that the `1 measure of coherence of a pure
state is never smaller than its relative entropy of coherence. We then use our result to show that the states maxi-
mizing the trace distance of coherence are exactly the maximally coherent states, and we derive a new inequality
relating the negativity and distillable entanglement of pure states.
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I. INTRODUCTION

One of the major goals in quantum information theory is to
find effective ways of quantifying the amount of “quantum-
ness” within a given system—that is, how much the system
differs from any possible classical mechanical description of
it. How this quantification is carried out varies heavily de-
pending on context, however, as some quantum states might
be useful for one quantum information processing task, yet
useless for another.

When multiple quantum systems interact with each other,
the resource of interest is typically entanglement, the quan-
tification of which has been well-investigated over the past
two decades [1–8]. However, when there is no interaction be-
tween different systems, the resource of interest is instead co-
herence, or the amount that a state is in a superposition of a
given set of mutually orthogonal states. With roots in quantum
optics [9, 10], coherence is an essential operational resource
in quantum information processing, and has been shown to be
intimately related to entanglement [11, 12]; in fact, it has been
shown that one can measure coherence via entanglement [13].

Despite its usefulness, an effort to formalize the quantifi-
cation of coherence has only begun somewhat more recently
[14]. The defining properties of a proper coherence measure
were identified in [15]; for example, a state ρ should have zero
coherence under the proposed measure if and only if ρ is inco-
herent (i.e., it is diagonal in the pre-specified orthogonal basis,
which we will always take to be the standard basis {|i〉}ni=1),
since such states are exactly the ones that represent classical
mixtures of the given basis states. We denote the set of all
n×n matrices byMn, the set of density matrices byDn, and
the set of incoherent states by In, or simplyM, D, and I if
the dimension is irrelevant or clear from context.

The two most widely-known coherence measures are the
`1-norm of coherence, defined as the sum of the absolute val-

ues of the off-diagonal entries of the density matrix:

C`1(ρ) :=
∑
i 6=j

|ρij |,

and the relative entropy of coherence [14]:

Cr(ρ) := S(ρdiag)− S(ρ),

where S(·) is the von Neumann entropy and ρdiag is the state
obtained from ρ by deleting all off-diagonal entries. Some
other coherence measures that have been proposed recently
include the trace distance of coherence [16], which is the trace
norm distance to the closest incoherent state:

Ctr (ρ) := min
δ∈I
‖ρ− δ‖tr = min

δ∈I

n∑
i=1

|λi(ρ− δ)|,

where λi(ρ − δ) are the eigenvalues of the matrix ρ − δ and
‖ · ‖tr is the trace norm, and the robustness of coherence [17]:

CR(ρ) := min
τ∈D

{
s ≥ 0

∣∣∣ ρ+ sτ

1 + s
∈ I
}
.

The `1-norm of coherence, relative entropy of coherence,
and robustness of coherence have all been shown to be proper
coherence measures, and it has been shown that the trace dis-
tance of coherence is a proper measure of coherence when
restricted to qubit states or X states [16]. Although the gen-
eral case remains open, this partial result helps validate the
fact that the trace distance is commonly used as a coherence
measure. Additionally, simple formulas are known for all of
these measures of coherence when restricted to pure states,
except for the trace distance of coherence. Indeed, the `1-
norm of coherence and the relative entropy of coherence are
defined via explicit formulas, and the robustness of coherence
of a pure state simply equals its `1-norm of coherence [17].
However, it was noted in [16] that it seems comparably diffi-
cult to compute the trace distance of coherence of a pure state,
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and evidence was given to suggest that a simple closed-form
formula might not exist.

In this work, we thoroughly investigate how these measures
of coherence behave on pure states. Our primary contribution
in Section II is to give an “almost formula” for the trace dis-
tance of coherence of a pure state: we show that it is given
by one of n different formulas (depending on the state), and
which formula is the correct one can be determined simply
by checking log2(n) inequalities. We also completely char-
acterize the closest incoherent state under the trace norm (and
operator norm), and we present examples and MATLAB code
to demonstrate the efficacy of our method both analytically
and numerically. In Section III, we use our method to prove
that the states maximizing the trace distance of coherence are
exactly the maximally coherent states—another property that
has already been known to hold for the other three measures
of coherence. In Section IV, we prove a recent conjecture [16]
that says that the `1 measure of coherence of a pure state is
not smaller than its relative entropy of coherence, and as an
immediate corollary we obtain an improvement to the known
bound of the distillable entanglement of pure states in terms of
their negativity. Finally, concluding remarks and open ques-
tions are discussed in Section V.

II. THE TRACE DISTANCE OF COHERENCE OF A PURE
STATE

We now present a characterization of Ctr (|x〉〈x|), where
|x〉 ∈ Cn is an arbitrary pure state (unit vector). Note that
there is a diagonal unitary U and a permutation matrix P such
that PU |x〉 is a unit vector having non-negative entries x1 ≥
· · · ≥ xn ≥ 0 in descending order. We then have

‖|x〉〈x| − δ‖tr = ‖PU(|x〉〈x| − δ)U∗P t‖tr

for any δ ∈ I. So, we may replace |x〉 by PU |x〉. Without
loss of generality, we will use this simplification to find the
best approximation for |x〉 = (x1, . . . , xn)

t with x1 ≥ · · · ≥
xn ≥ 0, but we note that it straightforwardly applies to the
general setting of an arbitrary unit vector in Cn.

With this modification, we have the following.

Theorem 1. Suppose |x〉 = (x1, . . . , xn)
t is a unit vector

with entries x1 ≥ · · · ≥ xn ≥ 0. Let s` =
∑`
j=1 xj , m` =∑n

j=`+1 x
2
j , and p` = s2` −1−`m` for ` ∈ {1, . . . , n}. There

is a maximum integer k ∈ {1, . . . , n} satisfying

xk > qk :=
1

2ksk

(
pk +

√
p2k + 4kmks2k

)
. (1)

The unique best approximation of |x〉〈x| in I with re-
spect to the trace norm (and the operator norm) is D =
diag (d1, . . . , dk, 0, . . . , 0) ∈ I with

dj =
xj − qk
sk − kqk

for 1 ≤ j ≤ k.

Furthermore,

Ctr (|x〉〈x|) = ‖|x〉〈x| −D‖tr = 2(qksk +mk),

and ‖|x〉〈x| −D‖ = qksk +mk.

Proof: We may assume that xn > 0, and use continuity for
the general case.

First, we prove that there exists a matrix D =
diag (d1, . . . , dk, 0, . . . , 0) such that |x〉〈x| −D has an eigen-
vector v = (qk, . . . , qk, xk+1, . . . , xn)

t corresponding to its
largest eigenvalue (we will later show that this D is the same
one from the statement of the theorem). To this end, let
d1, . . . , dk, q, µ > 0 be variables satisfying the matrix equa-
tion

(|x〉〈x|−D)v = µv with v = (q, . . . , q, xk+1, . . . , xn)
t.

Then |x〉〈x|v = Dv + µv. Because 〈x|v = qsk +mk, we
have

(qsk +mk)(x1, . . . , xk, xk+1, . . . , xn)
t

= (d1q + µq, . . . , dkq + µq, µxk+1, . . . , µxn)
t.

Summing up the first k entries of the vectors on the left and
right sides, we have

(qsk +mk)sk = kµq + q

k∑
j=1

dj = kµq + q. (2)

Comparing the last n− k entries of the vectors on both sides,
we have

qsk +mk = µ. (3)

Substituting (3) into (2) to eliminate µ, we have

fk(q) := kskq
2 − q(s2k − 1− kmk)− skmk = 0. (4)

Letting qk be the larger zero of fk(q), we have

qk =
1

2ksk

(
pk +

√
p2k + 4kmks2k

)
> 0,

where pk = s2k − 1− kmk. Note that

q1 =

(√
1− x21 + x21 − 1

)
/x1 < x1,

so there indeed exists a largest integer k ∈ {1, . . . , n} such
that xk > qk. From this point forward, we fix k at this largest
possible value, and we note that sk = x1+ · · ·+xk ≥ kxk ≥
kqk. Define

dj := (xj − qk)/(sk − kqk) > 0 for j = 1, . . . , k.

By our construction, we have

(|x〉〈x| −D)v = µv.
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Furthermore, by (3) we have

‖|x〉〈x| −D‖ = µ = qksk +mk and
‖|x〉〈x| −D‖tr = 2µ = 2(qksk +mk).

Next, we will prove that qk ≥ xk+1 if k < n. To this end, let
fk(q) be the polynomial defined by (4). Then

fk+1(xk+1)

= (k + 1)sk+1x
2
k+1 − xk+1[s

2
k+1 − 1− (k + 1)mk+1]

−sk+1mk+1

= kskx
2
k+1 + kx3k+1 + sk+1x

2
k+1

−xk+1[s
2
k + 2xk+1sk − 1− k(mk − x2k+1)−mk+1]

−(sk + xk+1)(mk − x2k+1)

= kskx
2
k+1 − xk+1(s

2
k − 1− kmk)− skmk

+sk+1x
2
k+1 − 2sk+1x

2
k+1 + xk+1(mk − x2k+1)

−xk+1mk + sk+1x
2
k+1 + x3k+1

= kskx
2
k+1 − xk+1(s

2
k − 1− kmk)− skmk

= fk(xk+1).

The product of the roots of the quadratic fk(q) equals
−skmk, which is negative, so they have opposite signs. As
a result, for any positive number µ, fk(µ) ≤ 0 if and only if
µ ≤ qk. Since we chose k so that xk+1 ≤ qk+1 (recall that k is
the largest subscript so that xk > qk), we have fk+1(xk+1) ≤
0. It follows that fk(xk+1) = fk+1(xk+1) ≤ 0 as well, i.e.,
xk+1 ≤ qk as desired.

Finally, we will show that D is the (unique) best approxi-
mation of |x〉〈x| in I by establishing the following.

Claim. Assume F = diag (f1, . . . , fn) such thatD−F ∈ In.
Then v∗Fv ≥ 0.

To prove this claim, note that D =
diag (d1, . . . , dk, 0, . . . , 0). If D − F ∈ In, then
fk+1, . . . , fn ≤ 0. Hence

v∗Fv = v∗diag (f1, . . . , fn)v

=

k∑
j=1

fjq
2
k +

n∑
j=k+1

fjx
2
j

= −
n∑

j=k+1

fjq
2
k +

n∑
j=k+1

fjx
2
j

=

n∑
j=k+1

fj(x
2
j − q2k) ≥ 0,

because we already showed that qk ≥ xk+1 ≥ · · · ≥ xn. By
Proposition 2 in the Appendix, D is the best approximation
element in In of |x〉〈x| with respect to the operator norm and
the trace norm. This completes the proof of the claim.

To prove the uniqueness of D and k, suppose D1 is another
element in I such that ‖|x〉〈x| −D‖ = ‖|x〉〈x| −D1‖. Then

‖|x〉〈x| −D‖ = min
δ∈I
‖|x〉〈x| − δ‖

≤ ‖|x〉〈x| − (D +D1)/2‖
≤ ‖(|x〉〈x| −D)/2‖+ ‖(|x〉〈x| −D1)/2‖.

By [18, Proposition 1.2], there are unitary matrices V1, V2 ∈
Mn such that V ∗1 (|x〉〈x|−D)V2 = [µ]⊕Y and V ∗1 (|x〉〈x|−
D1)V2 = [µ]⊕Z, where Y, Z ∈Mn−1 are negative semidef-
inite matrices, and ‖|x〉〈x| −D1‖ = ‖|x〉〈x| −D‖ = µ is the
largest eigenvalue of |x〉〈x| − D with eigenvector v as de-
fined before. Hence, if u is the first column of V2 and ũ is
the first column of V1, then (|x〉〈x| − D)u = µũ. It follows
that u = ξv for some ξ ∈ C and ũ = ξv. Consequently,
(|x〉〈x| −D1)v = v, and Dv = D1v implying that D = D1

as v has positive entries. This contradicts the assumption that
D 6= D1. By Proposition 2 in the Appendix, we see that
D ∈ I attains minδ∈I ‖|x〉〈x| − δ‖ if and only if D attains
minδ∈I ‖|x〉〈x| − δ‖tr . Thus, D is the unique element in I
attaining Ctr (|x〉〈x|).

Because k is the rank of the unique best approximation of
D in I (with respect to the operator norm), we see that k is
unique, which completes the proof of the theorem. (Alterna-
tively, if there is another k̃ satisfying (1), then one can use the
construction in our proof to get D̃ of rank k̃ that best approx-
imates |x〉〈x|, which is a contradiction.) �

Before proceeding, we note that the k = 1 and k = n cases
of Theorem 1 actually simplify significantly:

Corollary 1. Using the notation of Theorem 1, we have the
following.

1. The best incoherent approximation of |x〉〈x| is a rank
one matrix, which must equal diag (1, 0, . . . , 0), if and
only if x1m2 ≥ 2x2m1.

2. The best incoherent approximation of |x〉〈x| is
an invertible matrix, which must equal D =
diag (d1, . . . , dn) ∈ I with

dj =
1

n
[1− sn(sn − nxj)] > 0 for j = 1, . . . , n,

if and only if 1 > sn(sn − nxn).

Proof. To prove statement 1, we note that k = 1 if and only if
x2 ≤ q2. This is equivalent to 0 ≥ f2(x2), where f2(q) is the
quadratic defined in (4), as shown in the proof of Theorem 1.
Explicitly, we have

0 ≥ 2s2x
2
2 − x2(s22 − 1− 2m2)− s2m2

= 2(x1 + x2)x
2
2 − x2[(x1 + x2)

2 − 1] + 2x2m2 − s2m2

= x2[2(x1 + x2)x2 − (x21 + x22 + 2x1x2 − 1)]

+x2m2 − x1m2

= x2[2x
2
2 + (1− x21 − x22)] + x2(1− x21 − x22)− x1m2

= 2x2m1 − x1m2.

To prove statement 2, note that qn = 1
nsn

(s2n − 1), and the
stated inequality is equivalent to dj > 0 for all j, which is to
say that D is positive definite. �
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Although Theorem 1 appears somewhat technical at first
glance, it is very simple to use both numerically and analyti-
cally. On the numerical side, it provides an extremely fast al-
gorithm for computing Ctr (|x〉〈x|). Although it might seem
somewhat time-consuming at first to find the value of k de-
scribed by the theorem, the proof of the theorem showed that
if qk < xk then qj < xj for all j < k. Thus we can search for
k via binary search, which requires only log2(n) steps, rather
than searching through all n possible values of k. MATLAB
code that implements this algorithm is available for down-
load from [19], which is able to compute Ctr (|x〉〈x|) for pure
states |x〉 ∈ C1,000,000 in under one second on a standard lap-
top computer. We contrast this with the naive semidefinite
program for computing Ctr (|x〉〈x|) [16], which can only rea-
sonably handle states in C100 or so.

Theorem 1 can also be used to analytically compute
Ctr (|x〉〈x|) for arbitrary pure states as well, as we now
demonstrate with some examples.

Example 1. As a simple example, consider the qutrit pure
state |x〉 = (2/3, 2/3, 1/3), which was investigated in [16].
A direct calculation reveals that

q1 =
1

6

(
3
√
5− 5

)
≈ 0.2847,

q2 =
1

48

(
3
√
17 + 5

)
≈ 0.3619, and

q3 =
16

45
≈ 0.3556.

Thus k = 2 (since q1 < x1 and q2 < x2, but q3 ≥ x3),
which then gives Ctr (|x〉〈x|) = 1

6

(
3 +

√
17
)

and D =
diag(1/2, 1/2, 0), verifying that the state D found in [16] is
indeed optimal.

Example 2. As another example, consider an arbitrary qubit
pure state |x〉 = (x1, x2) ∈ C2. Then

q2 =
|x1x2|
|x1|+ |x2|

≤ min{|x1|, |x2|},

with equality if and only if either x1 = 0 or x2 = 0. If
x1, x2 6= 0 then k = 2 and we then have Ctr (|x〉〈x|) =
2|x1x2| and D = diag(|x〉〈x|), which agrees with the for-
mula for qubit states found in [16]. If x1 = 0 or x2 = 0 then
k = 1 and it is straightforward to check that we get the same
formula.

III. MAXIMALLY COHERENT STATES UNDER THE
TRACE NORM OF COHERENCE

We recall [15] that a pure state |x〉 ∈ Cn is called maxi-
mally coherent if all of its entries have equal absolute value:
|x1| = · · · = |xn| = 1/

√
n. Recently it has been suggested

that the maximum value of a proper measure of coherence
should be attained exactly by the maximally coherent states
[20], and this property is known to hold for the relative en-
tropy of coherence (this is straightforward to prove, see [15]

for example), the `1-norm of coherence [21, Theorem 2], and
the robustness of coherence [17]. We now show that this same
property also holds for the trace distance of coherence, which
provides further evidence that it is indeed a proper measure of
coherence.

Theorem 2. For all (potentially mixed) states ρ ∈ Dn, we
have Ctr (ρ) ≤ 2 − 2/n. Furthermore, equality holds if and
only if ρ = |x〉〈x|, where |x〉 is a maximally coherent state.

Proof. Let ρ be a general mixed state with spectral decompo-
sition

∑n
j=1 pj |xj〉〈xj | such that p1 ≥ · · · ≥ pk > 1/n ≥

pk+1 ≥ · · · ≥ pn. Then

min
δ∈I
‖ρ− δ‖tr ≤ ‖ρ− I/n‖tr

=

k∑
j=1

(pj − 1/n) +

n∑
j=k+1

(1/n− pj)

= 2

k∑
j=1

(pj − 1/n)

≤ 2(1− k/n)
≤ 2(1− 1/n),

where the second equality holds because tr (ρ − I/n) = 0.
If the equality minδ∈I ‖ρ − δ‖tr = 2(1 − 1/n) holds, then
k = 1 so that ρ = |x〉〈x| has rank one, and D = I/n satisfies
Ctr (|x〉〈x|) = ‖|x〉〈x|−D‖tr . We may replace |x〉 by PU |x〉
as in Section II and so we assume without loss of generality
that |x〉 = (x1, . . . , xn)

t with x1 ≥ · · · ≥ xn ≥ 0. By
Corollary 1 (2), we see that d1 = · · · = dn so that sn −
nx1 = · · · = sn − nxn. Thus, x1 = · · · = xn. The desired
conclusion follows. �

IV. RELATIONSHIP BETWEEN THE `1-NORM OF
COHERENCE AND THE RELATIVE ENTROPY OF

COHERENCE

We now turn to Conjecture 6 of [16], which asserted that
the `1-norm coherence of a pure state is never smaller than its
relative entropy of coherence. This section is devoted to prov-
ing this conjecture. Before proceeding, recall that the relative
entropy of coherence is defined in terms of the von Neumann
entropy S(ρ) := −tr (ρ log2(ρ)). From now on, we will write
log = log2 for notational simplicity, since we deal with no
other base.

Theorem 3. Suppose {λi}ni=1 are such that
∑
i

λi = 1 and

λi ≥ 0 for every i. Then

−
∑
i

λi log λi ≤
(∑

i

√
λi

)2
− 1.

Proof. In order to prove the above inequality, it suffices to
show that the function f(~λ) := (

∑
i

√
λi)

2 − 1 +
∑
i

λi log λi

is always non-negative for any probability vector ~λ.
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Without loss of generality, we can assume 0 ≤ λ1 ≤ λ2 ≤
· · · ≤ λn ≤ 1. Let λi to be the smallest one such that λi > 0,
and consider the following perturbation:

f
(
(λ1, · · · , λi−1, λi − ε, λi+1, · · · , λn−1, λn + ε)

)
−f
(
(λ1, · · · , λn)

)
=
( ∑
j 6=i,n

√
λj +

√
λi − ε+

√
λn + ε

)2
−
( ∑
j 6=i,n

√
λj +

√
λi +

√
λn
)2

+(λi − ε) log(λi − ε) + (λn + ε) log(λn + ε)

−λi log λi − λn log λn
=
(
2
∑
j 6=i,n

√
λj +

√
λi − ε+

√
λn + ε+

√
λi +

√
λn
)

×(
√
λi − ε+

√
λn + ε−

√
λi −

√
λn)

+λi log
(
1− ε

λi

)
+ λn log

(
1 +

ε

λn

)
+ε[log(λn + ε)− log(λi − ε)].

Recall that
√
1 + x = 1+ 1

2x−
1
8x

2+O(x3) and log (1 + x) =

x− x2

2 +O(x3), the above expression simplifies as2 ∑
j 6=i,n

√
λj +

√
λi
(
2− ε

2λi

)
+
√
λn
(
2 +

ε

2λn

)
×
(
−
√
λiε

2λi
+

√
λnε

2λn

)
+O(ε2)

=
(∑

j

√
λj
)( 1√

λn
− 1√

λi

)
ε+O(ε2).

So, if 0 < λi < λn, we will have

f((λ1, · · · , λi−1, λi − ε, λi+1, · · · , λn−1, λn + ε))

< f((λ1, · · · , λn)).

In other words, if f achieves its minimum at (λ1, · · · , λn),
then all its positive entries must be identical, i.e.
(λ1, · · · , λn) = (0, · · · , 0, 1k , · · · ,

1
k ), in which case f(λ) =

k − 1 + log 1
k = k − 1− log k, which is always non-negative

for k ∈ Z+. The result follows. �

Corollary 2. For every pure state |x〉,

C`1(|x〉〈x|) ≥ max{Cr(|x〉〈x|), 2Cr(|x〉〈x|) − 1}.

Proof. Write |x〉 =
∑n
i=1

√
λi|i〉 for a given basis {|i〉}ni=1.

Then C`1(|x〉〈x|) =
(∑n

i=1

√
λi
)2 − 1. Recall that

the von Neumann entropy is zero for pure states, and so
Cr(|x〉〈x|) reduces to S(|x〉〈x|diag) = −

∑n
i=1 λi log λi. In

[16, Proposition 5], the authors prove that C`1(|x〉〈x|) ≥
2Cr(|x〉〈x|) − 1. Theorem 3 above states that C`1(|x〉〈x|) ≥
−
∑n
i=1 λi log λi = Cr(|x〉〈x|). �

We note that Corollary 2 improves the boundC`1(|x〉〈x|) ≥
ln(2)Cr(|x〉〈x|) given in [16, Proposition 5]. We also note,
following the discussion in [16, Section III], that Corollary 2
improves a well-known inequality relating the negativity [22]
and the distillable entanglement of pure states.

To elaborate a bit, we recall that a well-known upper bound
on the relative entropy of entanglement Er(|y〉〈y|) of a pure
state |y〉 ∈ Cm ⊗ Cn in terms of its negativity N(|y〉〈y|) is
Er(|y〉〈y|) ≤ log(1+2N(|y〉〈y|)). Since the relative entropy
of entanglement is equal to the distillable entanglement when
restricted to pure states, the same inequality holds for distill-
able entanglement as well. Using our results, we immediately
obtain the following improvement to this bound:

Corollary 3. For every pure state |y〉 ∈ Cm ⊗ Cn,

Er(|y〉〈y|) ≤ 2N(|y〉〈y|).

Proof. It is straightforward to verify that if |x〉 =
∑n
i=1 xi|i〉

and |y〉 has Schmidt coefficients {xi}ni=1, then C`1(|x〉〈x|) =
2N(|y〉〈y|) and Cr(|x〉〈x|) = Er(|y〉〈y|). Thus using Corol-
lary 2 immediately implies that

Er(|y〉〈y|) = Cr(|x〉〈x|) ≤ C`1(|x〉〈x|) = 2N(|y〉〈y|),

as desired. �

It is straightforward to verify that the bound provided
by Corollary 3 is strictly better than the known bound
Er(|y〉〈y|) ≤ log(1+2N(|y〉〈y|)) exactly whenN(|y〉〈y|) <
1/2.

V. CONCLUSIONS AND DISCUSSION

In this work, we derived an explicit expression for the trace
distance of coherence of a pure state, as well as the closest
incoherent state to a given pure state with respect to the trace
distance. One natural question that arises from this work is
whether or not Theorem 1 can be used to show that the trace
distance of coherence is strongly monotonic under incoherent
quantum channels (and is thus a proper coherence measure),
at least when it is restricted to pure states. We also proved that
the states maximizing the trace distance of coherence are ex-
actly the maximally coherent states, which provides evidence
in favor of it being a proper coherence measure.

We also proved that the `1-norm of coherence is not smaller
than the relative entropy of coherence for pure states (Corol-
lary 2), and used this result to derive a new relationship be-
tween negativity and distillable entanglement of pure states.
However, we note that it has been conjectured that the same
relationship between the `1-norm of coherence and the rel-
ative entropy of coherence holds even for arbitrary mixed
states. This more general conjecture is beyond the scope of
our work, though; our perturbation techniques for the case of
pure states rely on the linearity of the first-order term, which
is no longer linear for the mixed state case. Perturbation tech-
niques may still apply if we study higher-order terms, how-
ever, more detailed calculation may be involved.
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Appendix: Some approximation theory results

In this section we present some of the technical results that
we needed in the proofs of Theorems 1 and 2. We begin with a
general result in approximation theory; for example, see [23].

Proposition 1. Suppose W is a closed convex set of a finite
dimensional normed space (V, ||| · |||), and v ∈ V −W . Then
w ∈ W is the best approximation of v if and only if there is
a linear functional f with |||f |||∗ ≤ 1 such that f(v − w) =
|||v −w||| and f(z) ≥ 0 for all z ∈ V such that w − z ∈W .

If ||| · ||| is a norm on Cn, the linear functional f in the above
proposition has the form f(X) = tr (MX) for someM in the
dual norm ball of ||| · |||. It is well known that the norms ‖ · ‖tr
and ‖ · ‖ are dual to each other, and their respective norm balls
equal

Btr = {A ∈ Cn : ‖A‖tr ≤ 1}
= conv {±uu∗ : u is a unit vector in Cn}, and

B = {A ∈ Cn : ‖A‖ ≤ 1}
= conv {A ∈ Cn : A is unitary}.

By Proposition 1 and the above fact, we have the following
result for pure states.

Proposition 2. Let |x〉 ∈ Cn be a unit vector such that
|x〉〈x| ∈ Dn − I, and δ ∈ I. Then |x〉〈x| − δ has exactly
one positive eigenvalue λ1, and

‖|x〉〈x| − δ‖tr = 2‖|x〉〈x| − δ‖ = 2λ1.

Consequently, the following conditions are equivalent for a
matrix D ∈ I.

(a) ‖|x〉〈x| −D‖tr = min{‖|x〉〈x| − δ‖tr : δ ∈ I}.

(b) ‖|x〉〈x| −D‖ = min{‖|x〉〈x| − δ‖ : δ ∈ I}.

(c) If v is the eigenvector corresponding to the unique pos-
itive eigenvalue of |x〉〈x| −D, then v∗Fv ≥ 0 for any
diagonal matrix F such that D − F ∈ I.

Proof. Note that if |x〉〈x| is not a diagonal matrix, then
|x〉〈x| − δ has eigenvalues λ1 > 0 ≥ λ2 ≥ · · · ≥ λn by
Weyl’s inequality. Because tr (|x〉〈x| − δ) =

∑n
j=1 λj = 0,

we have ‖|x〉〈x| − δ‖ = λ1 and ‖|x〉〈x| − δ‖tr = λ1 −∑n
j=2 λj = 2λ1 So, the first assertion, and the equivalence of

(a) and (b) follow. In particular, the same matrixD minimizes
the trace norm and the operator norm.

A matrix D ∈ I is best approximation of |x〉〈x| with re-
spect to the ‖·‖tr if an only if there is an elementH in the dual
norm ball of ‖ · ‖ such that tr (|x〉〈x| −D)H = ‖|x〉〈x| −D‖
and tr (HF ) ≥ 0 for any F such that D − F ∈ I. If H
has spectral decomposition

∑n
j=1 ξjuju

∗
j , then tr (|x〉〈x| −

D)H = λ1 can happen if and only if H = vv∗. �

For mixed states, we have the following results, which are
not used in our paper but may be useful for future study.
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Proposition 3. Let A ∈ Dn. The following conditions are
equivalent.

(a) ‖A−D‖tr = min{‖A− δ‖tr : δ ∈ I}.

(b) There is a contraction H ∈ Cn such that tr ((A −
D)H) = ‖A−D‖tr and tr (FH) ≥ 0 for any diagonal
matrix F satisfying D − F ∈ In.

(c) There is a unitary U ∈ Mn such that U∗(A−D)U =
X1⊕−X2⊕ 0n−p−q , where X1 ∈Mp, X2 ∈Mq are
diagonal matrices with positive diagonal entries, and a
contraction X3 ∈ Mn−p−q such that tr ((Ip ⊕ −Iq ⊕
X3)UFU

∗) ≥ 0 for any diagonal matrix F satisfying
D − F ∈ In.

Proof. By Proposition 1 and the remark after it, condition (a)
holds if and only if there is H in the dual norm ball of the
trace norm satisfying condition (b).

We can obtain more information about the matrix H in
condition (b). Clearly, if A − D has spectral decomposition∑p
j=1 µjuju

∗
j −

∑q
j=1 νjvjv

∗
j , where

µ1, . . . , µp, ν1, . . . , νq > 0,

then

H =

p∑
j=1

uju
∗
j −

q∑
j=1

vjv
∗
j +

n−p−q∑
j=1

ξjzjz
∗
j ,

so that {u1, . . . ,up,v1, . . . ,vq, z1, . . . , zn−p−q} is an or-
thonormal basis for Cn. Let U be the unitary matrix whose
columns are precisely these basis vectors. We then get condi-
tion (c). If (c) holds, one can let H = U∗(Ip ⊕−Iq ⊕X3)U .
Then condition (b) holds. �

Remark If the best approximation element D ∈ I to A is
such that A−D is invertible, then p+ q = n, and we have a
Hermitian unitary H satisfying the optimality condition.

Using a similar argument, we have the following.

Proposition 4. Let A ∈ Dn. The following are equivalent.

(a) ‖A−D‖ = min{‖A− δ‖ : δ ∈ I}.

(b) There is rank r orthogonal projection P ∈ Mn sat-
isfying |tr ((A − D)P )| = ‖A − D‖, where r is the
number of non-zero eigenvalues of A − D, such that
tr (PF ) ≥ 0 for any diagonal matrix F satisfying
D − F ∈ In.


