Hadamard-Diagonalizable Graphs with Perfect Quantum State Transfer

Nathaniel Johnston, joint work with
S. Kirkland, S. Plosker, R. Storey, and X. Zhang

MountAfllison

Workshop on Algebraic Graph Theory \& Quantum Walks Waterloo, Ontario, Canada

April 25, 2018

Hadamard matrices

- A Hadamard Matrix H is an $n \times n$ matrix whose entries are all 1 or -1 and satisfies $H H^{T}=n l$ (equivalently, its rows and/or columns are mutually orthogonal).
- The standard Hadamard matrices of order 2^{n} are

Hadamard matrices

- A Hadamard Matrix H is an $n \times n$ matrix whose entries are all 1 or -1 and satisfies $H H^{T}=n l$ (equivalently, its rows and/or columns are mutually orthogonal).
- The standard Hadamard matrices of order 2^{n} are

$$
H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Hadamard matrices

- A Hadamard Matrix H is an $n \times n$ matrix whose entries are all 1 or -1 and satisfies $H H^{T}=n l$ (equivalently, its rows and/or columns are mutually orthogonal).
- The standard Hadamard matrices of order 2^{n} are

$$
\begin{aligned}
& H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \\
& H_{4}=H_{2} \otimes H_{2}=\left[\begin{array}{cc}
H_{2} & H_{2} \\
H_{2} & -H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Hadamard matrices

- A Hadamard Matrix H is an $n \times n$ matrix whose entries are all 1 or -1 and satisfies $H H^{T}=n l$ (equivalently, its rows and/or columns are mutually orthogonal).
- The standard Hadamard matrices of order 2^{n} are

$$
\begin{aligned}
H_{2} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \\
H_{4} & =H_{2} \otimes H_{2}=\left[\begin{array}{cc}
H_{2} & H_{2} \\
H_{2} & -H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \\
H_{2^{n+1}} & =H_{2} \otimes H_{2^{n}}=\left[\begin{array}{cc}
H_{2^{n}} & H_{2^{n}} \\
H_{2^{n}} & -H_{2^{n}}
\end{array}\right] \text { for all } n \geq 1 .
\end{aligned}
$$

Adjacency matrix of a (weighted) graph

- The adjacency matrix of a (weighted) graph is the $n \times n$ matrix $A=\left(a_{j, k}\right)$ defined by

$$
a_{j, k}= \begin{cases}w(j, k) & \text { if } \mathrm{j} \text { and } \mathrm{k} \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

- For example, the graph on the left below has adjacency matrix on the right:

Adjacency matrix of a (weighted) graph

- The adjacency matrix of a (weighted) graph is the $n \times n$ matrix $A=\left(a_{j, k}\right)$ defined by

$$
a_{j, k}= \begin{cases}w(j, k) & \text { if } \mathrm{j} \text { and } \mathrm{k} \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

- For example, the graph on the left below has adjacency matrix on the right:

$$
A=\left[\begin{array}{llllll}
0 & 5 & 3 & 0 & 0 & 0 \\
5 & 0 & 0 & 4 & 0 & 0 \\
3 & 0 & 0 & 1 & 2 & 0 \\
0 & 4 & 1 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 & 4 \\
0 & 0 & 0 & 1 & 4 & 0
\end{array}\right]
$$

Laplacian matrix of a (weighted) graph

- The Laplacian matrix of a (weighted) graph is the $n \times n$ matrix $L=D-A$ where A is its adjacency matrix and D is its diagonal degree matrix.

Laplacian matrix of a (weighted) graph

- The Laplacian matrix of a (weighted) graph is the $n \times n$ matrix $L=D-A$ where A is its adjacency matrix and D is its diagonal degree matrix.

$$
\begin{aligned}
D & =\left[\begin{array}{llllll}
8 & 0 & 0 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 5
\end{array}\right], \\
L & =\left[\begin{array}{cccccc}
8 & -5 & -3 & 0 & 0 & 0 \\
-5 & 9 & 0 & -4 & 0 & 0 \\
-3 & 0 & 6 & -1 & -2 & 0 \\
0 & -4 & -1 & 6 & 0 & -1 \\
0 & 0 & -2 & 0 & 6 & -4 \\
0 & 0 & 0 & -1 & -4 & 5
\end{array}\right]
\end{aligned}
$$

Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
> ($1,1, \ldots, 1$) is an eigenvector with eigenvalue 0 .
- The multiplicity of the eigenvalue 0 is the number of connected components.

Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1,1, \ldots, 1)$ is an eigenvector with eigenvalue 0 .
- The multiplicity of the eigenvalue 0 is the number of connected components.

Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1,1, \ldots, 1)$ is an eigenvector with eigenvalue 0 .
- The multiplicity of the eigenvalue 0 is the number of connected components.

Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1,1, \ldots, 1)$ is an eigenvector with eigenvalue 0 .
- The multiplicity of the eigenvalue 0 is the number of connected components.

Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1,1, \ldots, 1)$ is an eigenvector with eigenvalue 0 .
- The multiplicity of the eigenvalue 0 is the number of connected components.

Perfect State Transfer

A graph with Laplacian L exhibits perfect state transfer (PST) at time t between vertices v_{j} and v_{k} if the (j, k)-entry of $e^{i t L}$ has magnitude 1.

```
- Since \(L\) is symmetric, \(e^{i t L}\) is unitary, so none of its entries
    have magnitude larger than 1. Also, if PST occurs between
    vertices \(v_{j}\) and \(v_{k}\) then all other entries in the \(j\)-th row and
    \(k\)-th column of \(e^{i t L}\) are 0 .
- Motivation: This means that after time \(t\), the quantum state
    \(|j\rangle\) evolves into the state \(e^{i t L}|j\rangle=|k\rangle\).
- Morally, this means we have transferred the quantum state
    from vertex \(v_{j}\) to vertex \(v_{k}\) of the graph (perfectly-without
    any noise/errors).
```


Perfect State Transfer

A graph with Laplacian L exhibits perfect state transfer (PST) at time t between vertices v_{j} and v_{k} if the (j, k)-entry of $e^{i t L}$ has magnitude 1 .

- Since L is symmetric, $e^{i t L}$ is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_{j} and v_{k} then all other entries in the j-th row and k-th column of $e^{i t L}$ are 0 .
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{i t L}|j\rangle=|k\rangle$
- Morally, this means we have transferred the quantum state from vertex v_{j} to vertex v_{k} of the graph (perfectly-without any noise/errors)

Perfect State Transfer

A graph with Laplacian L exhibits perfect state transfer (PST) at time t between vertices v_{j} and v_{k} if the (j, k)-entry of $e^{i t L}$ has magnitude 1 .

- Since L is symmetric, $e^{i t L}$ is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_{j} and v_{k} then all other entries in the j-th row and k-th column of $e^{i t L}$ are 0 .
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{i t L}|j\rangle=|k\rangle$.
- Morally, this means we have transferred the quantum state from vertex v_{j} to vertex v_{k} of the graph (perfectly-without any noise/errors)

Perfect State Transfer

A graph with Laplacian L exhibits perfect state transfer (PST) at time t between vertices v_{j} and v_{k} if the (j, k)-entry of $e^{i t L}$ has magnitude 1.

- Since L is symmetric, $e^{i t L}$ is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_{j} and v_{k} then all other entries in the j-th row and k-th column of $e^{i t L}$ are 0 .
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{i t L}|j\rangle=|k\rangle$.
- Morally, this means we have transferred the quantum state from vertex v_{j} to vertex v_{k} of the graph (perfectly-without any noise/errors).

Quantum State Transfer

Question (The BIG Question)

Which (weighted) graphs exhibit PST?

Quantum State Transfer

Question (The BIG Question)

Which (weighted) graphs exhibit PST?

- P_{2} and P_{3}.
- Square, cube, hypercube.
- Let's find more.

Quantum State Transfer

Question (The BIG Question)

Which (weighted) graphs exhibit PST?

- P_{2} and P_{3}.
- Square, cube, hypercube.
- Let's find more.

Quantum State Transfer

Question (The BIG Question)

Which (weighted) graphs exhibit PST?

- P_{2} and P_{3}.
- Square, cube, hypercube.
- Let's find more.

Hadamard-Diagonalizable Graphs

A graph with Laplacian L is Hadamard-diagonalizable if there exists a Hadamard matrix H such that $H^{T} L H$ is diagonal.
> - It is more convenient to diagonalize by a scaled Hadamard $U=\frac{1}{\sqrt{n}} H$ so that $U^{T} L U$ contains the eigenvalues of L along its diagonal.

- For example, the square graph is Hadamard-diagonalizable:

Hadamard-Diagonalizable Graphs

A graph with Laplacian L is Hadamard-diagonalizable if there exists a Hadamard matrix H such that $H^{T} L H$ is diagonal.

- It is more convenient to diagonalize by a scaled Hadamard $U=\frac{1}{\sqrt{n}} H$ so that $U^{T} L U$ contains the eigenvalues of L along its diagonal.
- For example, the square graph is Hadamard-diagonalizable:

Hadamard-Diagonalizable Graphs

A graph with Laplacian L is Hadamard-diagonalizable if there exists a Hadamard matrix H such that $H^{T} L H$ is diagonal.

- It is more convenient to diagonalize by a scaled Hadamard $U=\frac{1}{\sqrt{n}} H$ so that $U^{\top} L U$ contains the eigenvalues of L along its diagonal.
- For example, the square graph is Hadamard-diagonalizable:

$$
L=\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

Hadamard-Diagonalizable Graphs

A graph with Laplacian L is Hadamard-diagonalizable if there exists a Hadamard matrix H such that $H^{T} L H$ is diagonal.

- It is more convenient to diagonalize by a scaled Hadamard $U=\frac{1}{\sqrt{n}} H$ so that $U^{\top} L U$ contains the eigenvalues of L along its diagonal.
- For example, the square graph is Hadamard-diagonalizable:

$$
\begin{aligned}
L & =\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \\
& =\left(\frac{1}{2} H_{4}\right)\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left(\frac{1}{2} H_{4}\right)^{T} .
\end{aligned}
$$

Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and column equal to 1 .

- Barik-Fallat-Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
- G is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
- The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and column equal to 1 .

- Barik-Fallat-Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:

- Integer weights can be extended to rational weights via scaling (changes the time of PST).

Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and column equal to 1 .

- Barik-Fallat-Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
- G is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
* The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST)

Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and column equal to 1 .

- Barik-Fallat-Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
- G is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
- The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and column equal to 1 .

- Barik-Fallat-Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
- G is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
- The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)
An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.
> - Hadamard diagonalizability is thus more general than being cubelike.
> - We don't consider just unweighted graphs or just the standard Hadamard.

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)
An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.

- Hadamard diagonalizability is thus more general than being cubelike.
- We don't consider just unweighted graphs or just the standard Hadamard.

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)
An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.

- Hadamard diagonalizability is thus more general than being cubelike.
- We don't consider just unweighted graphs or just the standard Hadamard.

A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi / 2$.

> Corollary: If PST occurs, then half of the eigenvalues are
> $0(\bmod 4)$ and the other half are $2(\bmod 4)$.

A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi / 2$.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a Hadamard matrix $H=\left(h_{i, j}\right)$. Denote the eigenvalues of its Laplacian by $\lambda_{1}, \cdots, \lambda_{n}$. Then G has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if, for each $\ell=1, \cdots, n$,

$$
\lambda_{\ell} \equiv 1-h_{j, \ell} h_{k, \ell}(\bmod 4)
$$

Corollary: If PST occurs, then half of the eigenvalues are
$0(\bmod 4)$ and the other half are $2(\bmod 4)$.

A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi / 2$.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a Hadamard matrix $H=\left(h_{i, j}\right)$. Denote the eigenvalues of its Laplacian by $\lambda_{1}, \cdots, \lambda_{n}$. Then G has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if, for each $\ell=1, \cdots, n$,

$$
\lambda_{\ell} \equiv 1-h_{j, \ell} h_{k, \ell}(\bmod 4) .
$$

Corollary: If PST occurs, then half of the eigenvalues are $0(\bmod 4)$ and the other half are $2(\bmod 4)$.

A Spectral Characterisation

E.g., the square graph has PST between vertices v_{1} and $v_{3} \ldots$

A Spectral Characterisation

E.g., the square graph has PST between vertices v_{1} and $v_{3} \ldots$

$$
L=\left(\frac{1}{2} H_{4}\right)\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left(\frac{1}{2} H_{4}\right)^{T}
$$

A Spectral Characterisation

E.g., the square graph has PST between vertices v_{1} and $v_{3} \ldots$

$$
L=\left(\frac{1}{2} H_{4}\right)\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left(\frac{1}{2} H_{4}\right)^{T}
$$

since

$$
H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

A Spectral Characterisation

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- The (essentially unique) 12×12 Hadamard is
$H_{12}=\left[\begin{array}{cccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 \\ 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1\end{array}\right]$

A Spectral Characterisation

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- The (essentially unique) 12×12 Hadamard is

A Spectral Characterisation

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- The (essentially unique) 12×12 Hadamard is

$$
H_{12}=\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1
\end{array}\right]
$$

A Spectral Characterisation

To make a graph with PST between vertices v_{1} and v_{2}, we construct a set of integer eigenvalues that are 0 or $2(\bmod 4)$ according to the second row of H_{12} :

One possible choice:
$0,18,24,18,24,24,24,18,18,18,12,18$.
Then we set $\Lambda=\operatorname{diag}(0,18,24,18,24,24,24,18,18,18,12,18)$

A Spectral Characterisation

To make a graph with PST between vertices v_{1} and v_{2}, we construct a set of integer eigenvalues that are 0 or $2(\bmod 4)$ according to the second row of H_{12} :

$$
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1
$$

One possible choice:

$$
0,18,24,18,24,24,24,18,18,18,12,18 .
$$

Then we set $\Lambda=\operatorname{diag}(0,18,24,18,24,24,24,18,18,18,12,18)$

A Spectral Characterisation

To make a graph with PST between vertices v_{1} and v_{2}, we construct a set of integer eigenvalues that are 0 or $2(\bmod 4)$ according to the second row of H_{12} :

$$
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1
$$

One possible choice:

$$
0,18,24,18,24,24,24,18,18,18,12,18 .
$$

Then we set $\Lambda=\operatorname{diag}(0,18,24,18,24,24,24,18,18,18,12,18)$

A Spectral Characterisation

To make a graph with PST between vertices v_{1} and v_{2}, we construct a set of integer eigenvalues that are 0 or $2(\bmod 4)$ according to the second row of H_{12} :

$$
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1
$$

One possible choice:

$$
0,18,24,18,24,24,24,18,18,18,12,18 .
$$

Then we set $\Lambda=\operatorname{diag}(0,18,24,18,24,24,24,18,18,18,12,18)$ and

$$
L=\frac{1}{12} H_{12}^{T} \wedge H_{12}
$$

A Spectral Characterisation

It is straightforward to calculate

L	$=\frac{1}{12} H_{12}^{\top} \wedge H_{12}$
	$=\left[\begin{array}{cccccccccccc}18 & 0 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\ 0 & 18 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\ -1 & -1 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 & -4 & -2 \\ -1 & -1 & -2 & 18 & -4 & 0 & 0 & -2 & -2 & -2 & -2 & -2 \\ -1 & -1 & -2 & -4 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 \\ -3 & -3 & 0 & 0 & -2 & 18 & -2 & -2 & 0 & -2 & -2 & -2 \\ -3 & -3 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 & 0 \\ -3 & -3 & 0 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 \\ -1 & -1 & -2 & -2 & -2 & 0 & -2 & -2 & 18 & 0 & -2 & -4 \\ -3 & -3 & -2 & -2 & 0 & -2 & -2 & -2 & 0 & 18 & 0 & -2 \\ -1 & -1 & -4 & -2 & -2 & -2 & 0 & -2 & -2 & 0 & 18 & -2 \\ -1 & -1 & -2 & -2 & -2 & -2 & 0 & 0 & -4 & -2 & -2 & 18\end{array}\right]$

This is (necessarily, by construction) the Laplacian of a graph with PST.

A Spectral Characterisation

It is straightforward to calculate

$$
\begin{aligned}
L & =\frac{1}{12} H_{12}^{\top} \wedge H_{12} \\
& =\left[\begin{array}{cccccccccccc}
18 & 0 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\
0 & 18 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\
-1 & -1 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 & -4 & -2 \\
-1 & -1 & -2 & 18 & -4 & 0 & 0 & -2 & -2 & -2 & -2 & -2 \\
-1 & -1 & -2 & -4 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 \\
-3 & -3 & 0 & 0 & -2 & 18 & -2 & -2 & 0 & -2 & -2 & -2 \\
-3 & -3 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 & 0 \\
-3 & -3 & 0 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 \\
-1 & -1 & -2 & -2 & -2 & 0 & -2 & -2 & 18 & 0 & -2 & -4 \\
-3 & -3 & -2 & -2 & 0 & -2 & -2 & -2 & 0 & 18 & 0 & -2 \\
-1 & -1 & -4 & -2 & -2 & -2 & 0 & -2 & -2 & 0 & 18 & -2 \\
-1 & -1 & -2 & -2 & -2 & -2 & 0 & 0 & -4 & -2 & -2 & 18
\end{array}\right]
\end{aligned}
$$

This is (necessarily, by construction) the Laplacian of a graph with PST

A Spectral Characterisation

It is straightforward to calculate

$$
\begin{aligned}
L & =\frac{1}{12} H_{12}^{T} \Lambda H_{12} \\
& =\left[\begin{array}{cccccccccccc}
18 & 0 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\
0 & 18 & -1 & -1 & -1 & -3 & -3 & -3 & -1 & -3 & -1 & -1 \\
-1 & -1 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 & -4 & -2 \\
-1 & -1 & -2 & 18 & -4 & 0 & 0 & -2 & -2 & -2 & -2 & -2 \\
-1 & -1 & -2 & -4 & 18 & -2 & -2 & 0 & -2 & 0 & -2 & -2 \\
-3 & -3 & 0 & 0 & -2 & 18 & -2 & -2 & 0 & -2 & -2 & -2 \\
-3 & -3 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 & 0 \\
-3 & -3 & 0 & -2 & 0 & -2 & -2 & 18 & -2 & -2 & -2 & 0 \\
-1 & -1 & -2 & -2 & -2 & 0 & -2 & -2 & 18 & 0 & -2 & -4 \\
-3 & -3 & -2 & -2 & 0 & -2 & -2 & -2 & 0 & 18 & 0 & -2 \\
-1 & -1 & -4 & -2 & -2 & -2 & 0 & -2 & -2 & 0 & 18 & -2 \\
-1 & -1 & -2 & -2 & -2 & -2 & 0 & 0 & -4 & -2 & -2 & 18
\end{array}\right]
\end{aligned}
$$

This is (necessarily, by construction) the Laplacian of a graph with PST.

Merge of Graphs

Suppose that G_{1} and G_{2} are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_{1}=D_{1}-A_{1}$ and $L_{2}=D_{2}-A_{2}$, respectively.

We define their merge with respect to the weights w_{1} and w_{2} to be the graph $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ with Laplacian

When $w_{1}=w_{2}=1$, we denote the merge simply by $G_{1} \odot G_{2}$.

Merge of Graphs

Suppose that G_{1} and G_{2} are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_{1}=D_{1}-A_{1}$ and $L_{2}=D_{2}-A_{2}$, respectively.
We define their merge with respect to the weights w_{1} and w_{2} to be the graph $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ with Laplacian

$$
\left[\begin{array}{cc}
w_{1} L_{1}+w_{2} D_{2} & -w_{2} A_{2} \\
-w_{2} A_{2} & w_{1} L_{1}+w_{2} D_{2}
\end{array}\right]
$$

When $w_{1}=w_{2}=1$, we denote the merge simply by $G_{1} \odot G_{2}$.

Merge of Graphs

Suppose that G_{1} and G_{2} are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_{1}=D_{1}-A_{1}$ and $L_{2}=D_{2}-A_{2}$, respectively.
We define their merge with respect to the weights w_{1} and w_{2} to be the graph $G_{1} w_{1} \odot_{w_{2}} G_{2}$ with Laplacian

$$
\left[\begin{array}{cc}
w_{1} L_{1}+w_{2} D_{2} & -w_{2} A_{2} \\
-w_{2} A_{2} & w_{1} L_{1}+w_{2} D_{2}
\end{array}\right]
$$

When $w_{1}=w_{2}=1$, we denote the merge simply by $G_{1} \odot G_{2}$.

Example

Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

1) $j, k \in\{1, \ldots, n\}$ and
 time $\pi / 2$, or
 and v_{k} at time $\pi / 2$, or
1.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with Laplacian $L_{1}+L_{2}$ has PST between v_{j} and v_{k} at time $\pi / 2$;

Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_{1} and G_{2} are integer-weighted graphs with regularities d_{1} and d_{2}, respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if one of the following 8 conditions holds:

Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_{1} and G_{2} are integer-weighted graphs with regularities d_{1} and d_{2}, respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if one of the following 8 conditions holds:

1) $j, k \in\{1, \ldots, n\}$ and
1.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j} and v_{k} at time $\pi / 2$, or

Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_{1} and G_{2} are integer-weighted graphs with regularities d_{1} and d_{2}, respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if one of the following 8 conditions holds:

1) $j, k \in\{1, \ldots, n\}$ and
1.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j} and v_{k} at time $\pi / 2$, or
1.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j} and v_{k} at time $\pi / 2$, or
1.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with
Laplacian $L_{1}+L_{2}$ has PST between v_{j} and v_{k} at time $\pi / 2$;

Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_{1} and G_{2} are integer-weighted graphs with regularities d_{1} and d_{2}, respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ has PST between vertices v_{j} and v_{k} at time $\pi / 2$ if and only if one of the following 8 conditions holds:

1) $j, k \in\{1, \ldots, n\}$ and
1.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j} and v_{k} at time $\pi / 2$, or
1.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j} and v_{k} at time $\pi / 2$, or
1.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with Laplacian $L_{1}+L_{2}$ has PST between v_{j} and v_{k} at time $\pi / 2$;

Using the Merge to Create Graphs with PST

```
2) j,k\in{n+1,\ldots,2n} and
    2.a) }\mp@subsup{w}{1}{}\mathrm{ is odd, w}\mp@subsup{w}{2}{}\mathrm{ is even, and G}\mp@subsup{G}{1}{}\mathrm{ has PST between }\mp@subsup{v}{j-n}{}\mathrm{ and }\mp@subsup{v}{k-n}{
        at time }\pi/2\mathrm{ , or
    2.b) }\mp@subsup{w}{1}{}\mathrm{ and }\mp@subsup{d}{2}{}\mathrm{ are even, w}\mp@subsup{w}{2}{}\mathrm{ is odd, and }\mp@subsup{G}{2}{}\mathrm{ has PST between }\mp@subsup{v}{j-n}{
    and }\mp@subsup{v}{k-n}{}\mathrm{ at time }\pi/2\mathrm{ , or
    2.c) }\mp@subsup{w}{1}{}\mathrm{ and }\mp@subsup{w}{2}{}\mathrm{ are odd, d}\mp@subsup{d}{2}{}\mathrm{ is even, and the weighted graph with
    Laplacian L}\mp@subsup{L}{1}{}+\mp@subsup{L}{2}{}\mathrm{ has PST between }\mp@subsup{v}{j-n}{}\mathrm{ and }\mp@subsup{v}{k-n}{}\mathrm{ at time }\pi/2\mathrm{ ;
3) }j\in{1,\ldots,n},k\in{n+1,\ldots,2n} and
    3.a) w
    and}\mp@subsup{v}{k-n}{}\mathrm{ at time }\pi/2\mathrm{ , or
    3.b) w
    Laplacian matrix }\mp@subsup{L}{1}{}+\mp@subsup{L}{2}{}\mathrm{ has PST between }\mp@subsup{v}{j}{}\mathrm{ and }\mp@subsup{v}{k-n}{}\mathrm{ at
    time \pi/2.
```


Using the Merge to Create Graphs with PST

2) $j, k \in\{n+1, \ldots, 2 n\}$ and
2.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or

Using the Merge to Create Graphs with PST

2) $j, k \in\{n+1, \ldots, 2 n\}$ and
2.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with Laplacian $L_{1}+L_{2}$ has PST between v_{j-n} and v_{k-n} at time $\pi / 2$;

Using the Merge to Create Graphs with PST

2) $j, k \in\{n+1, \ldots, 2 n\}$ and
2.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with Laplacian $L_{1}+L_{2}$ has PST between v_{j-n} and v_{k-n} at time $\pi / 2$;
3) $j \in\{1, \ldots, n\}, k \in\{n+1, \ldots, 2 n\}$ and
3.a) w_{1} is even, w_{2} and d_{2} are odd, and G_{2} has PST between v_{j} and v_{k-n} at time $\pi / 2$, or
3.b) w_{1}, w_{2}, and d_{2} are all odd, and the weighted graph with
Laplacian matrix $L_{1}+L_{2}$ has PST between v_{j} and v_{k-n} at time $\pi / 2$.

Using the Merge to Create Graphs with PST

2) $j, k \in\{n+1, \ldots, 2 n\}$ and
2.a) w_{1} is odd, w_{2} is even, and G_{1} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.b) w_{1} and d_{2} are even, w_{2} is odd, and G_{2} has PST between v_{j-n} and v_{k-n} at time $\pi / 2$, or
2.c) w_{1} and w_{2} are odd, d_{2} is even, and the weighted graph with Laplacian $L_{1}+L_{2}$ has PST between v_{j-n} and v_{k-n} at time $\pi / 2$;
3) $j \in\{1, \ldots, n\}, k \in\{n+1, \ldots, 2 n\}$ and
3.a) w_{1} is even, w_{2} and d_{2} are odd, and G_{2} has PST between v_{j} and v_{k-n} at time $\pi / 2$, or
3.b) w_{1}, w_{2}, and d_{2} are all odd, and the weighted graph with Laplacian matrix $L_{1}+L_{2}$ has PST between v_{j} and v_{k-n} at time $\pi / 2$.

Using the Merge to Create Graphs with PST

- If both w_{1} and w_{2} are even, the merge $G_{1} w_{w_{1}} \odot_{w_{2}} G_{2}$ does not have PST at time $\pi / 2$.
- However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w_{1}, w_{2}).
* One simple corollary of this fact is that many different weightings of the hypercube have PST at time $\pi / 2 \ldots$

Using the Merge to Create Graphs with PST

- If both w_{1} and w_{2} are even, the merge $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ does not have PST at time $\pi / 2$.
- However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w_{1}, w_{2}).
- One simple corollary of this fact is that many different weightings of the hypercube have PST at time $\pi / 2 \ldots$

Using the Merge to Create Graphs with PST

- If both w_{1} and w_{2} are even, the merge $G_{1}{ }_{w_{1}} \odot_{w_{2}} G_{2}$ does not have PST at time $\pi / 2$.
- However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w_{1}, w_{2}).
- One simple corollary of this fact is that many different weightings of the hypercube have PST at time $\pi / 2 \ldots$

Using the Merge to Create Graphs with PST

Corollary (PST of Weighted Hypercube)

Suppose $w_{1}, w_{2}, \ldots, w_{n}$ are nonzero integers, exactly d of which are odd, and consider the weighted hypercube
$C_{n}:=\left(w_{1} K_{2}\right) \square\left(w_{2} K_{2}\right) \square \cdots \square\left(w_{n} K_{2}\right)$. For each vertex v_{j} of C_{n}, there is a vertex v_{k} at distance d from v_{j} such that there is PST from v_{j} to v_{k} at time $\pi / 2$.

Using the Merge to Create Graphs with PST

Corollary (PST of Weighted Hypercube)

Suppose $w_{1}, w_{2}, \ldots, w_{n}$ are nonzero integers, exactly d of which are odd, and consider the weighted hypercube
$C_{n}:=\left(w_{1} K_{2}\right) \square\left(w_{2} K_{2}\right) \square \cdots \square\left(w_{n} K_{2}\right)$. For each vertex v_{j} of C_{n}, there is a vertex v_{k} at distance d from v_{j} such that there is PST from v_{j} to v_{k} at time $\pi / 2$.

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time $\pi / 2$. Is it the case that $n \leq 2^{r}$?
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4 ?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time $\pi / 2$. Is it the case that $n \leq 2^{r}$?
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4 ?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time $\pi / 2$. Is it the case that $n \leq 2^{r}$?
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4 ?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time $\pi / 2$. Is it the case that $n \leq 2^{r}$? True if $r \leq 4$.
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time $\pi / 2$. Is it the case that $n \leq 2^{r}$? True if $r \leq 4$.
- More examples of Hadamard-diagonalizable graphs with PST?

