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Hadamard matrices

I A Hadamard Matrix H is an n × n matrix whose entries are
all 1 or −1 and satisfies HHT = nI (equivalently, its rows
and/or columns are mutually orthogonal).

I The standard Hadamard matrices of order 2n are

H2 =

[
1 1
1 −1

]
,

H4 = H2 ⊗ H2 =

[
H2 H2

H2 −H2

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,
H2n+1 = H2 ⊗ H2n =

[
H2n H2n

H2n −H2n

]
for all n ≥ 1.
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Adjacency matrix of a (weighted) graph

I The adjacency matrix of a (weighted) graph is the n × n
matrix A = (aj ,k) defined by

aj ,k =

{
w(j , k) if j and k are adjacent

0 otherwise

I For example, the graph on the left below has adjacency matrix
on the right:

v1

v2

v3

v4

v5

v6

5

3

4

1

2

1

4

A =



0 5 3 0 0 0
5 0 0 4 0 0
3 0 0 1 2 0
0 4 1 0 0 1
0 0 2 0 0 4
0 0 0 1 4 0


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Laplacian matrix of a (weighted) graph

I The Laplacian matrix of a (weighted) graph is the n × n
matrix L = D −A where A is its adjacency matrix and D is its
diagonal degree matrix.

v1

v2

v3

v4

v5

v6

5

3

4

1

2

1

4

D =


8 0 0 0 0 0
0 9 0 0 0 0
0 0 6 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 5

 ,

L =


8 −5 −3 0 0 0
−5 9 0 −4 0 0
−3 0 6 −1 −2 0
0 −4 −1 6 0 −1
0 0 −2 0 6 −4
0 0 0 −1 −4 5


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Laplacian matrix of a (weighted) graph

The Laplacian matrix L of any graph has many nice properties:

I Symmetric.

I Positive semidefinite (since it is diagonally dominant).

I Row sums 0. Equivalently...

I (1, 1, . . . , 1) is an eigenvector with eigenvalue 0.

I The multiplicity of the eigenvalue 0 is the number of
connected components.
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Perfect State Transfer

A graph with Laplacian L exhibits perfect state transfer (PST)
at time t between vertices vj and vk if the (j , k)-entry of e itL has
magnitude 1.

I Since L is symmetric, e itL is unitary, so none of its entries
have magnitude larger than 1. Also, if PST occurs between
vertices vj and vk then all other entries in the j-th row and
k-th column of e itL are 0.

I Motivation: This means that after time t, the quantum state
|j〉 evolves into the state e itL|j〉 = |k〉.

I Morally, this means we have transferred the quantum state
from vertex vj to vertex vk of the graph (perfectly—without
any noise/errors).
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Quantum State Transfer

Question (The BIG Question)

Which (weighted) graphs exhibit PST?

I P2 and P3.

I Square, cube, hypercube.

I Let’s find more.
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Hadamard-Diagonalizable Graphs

A graph with Laplacian L is Hadamard-diagonalizable if there
exists a Hadamard matrix H such that HTLH is diagonal.

I It is more convenient to diagonalize by a scaled Hadamard
U = 1√

n
H so that UTLU contains the eigenvalues of L along

its diagonal.

I For example, the square graph is Hadamard-diagonalizable:

v1 v2

v3v4

1

1

1

1

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2



=

(
1

2
H4

)
0 0 0 0
0 4 0 0
0 0 2 0
0 0 0 2

(1

2
H4

)T

.
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Hadamard-Diagonalizable Graphs

WLOG, H can be assumed to have every entry in its first row and
column equal to 1.

I Barik–Fallat–Kirkland (2011) says if a graph G has integer
weights and is Hadamard-diagonalizable then:

I G is regular (i.e., the sum of the edge weights adjacent to each
vertex is constant).

I The eigenvalues of its Laplacian are even integers.

I Integer weights can be extended to rational weights via scaling
(changes the time of PST).
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Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard
if and only if it is cubelike.

I Hadamard diagonalizability is thus more general than being
cubelike.

I We don’t consider just unweighted graphs or just the standard
Hadamard.



Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard
if and only if it is cubelike.

I Hadamard diagonalizability is thus more general than being
cubelike.

I We don’t consider just unweighted graphs or just the standard
Hadamard.



Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard
if and only if it is cubelike.

I Hadamard diagonalizability is thus more general than being
cubelike.

I We don’t consider just unweighted graphs or just the standard
Hadamard.



A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable
graph, the following theorem shows that it is easy to determine
whether or not PST occurs at time π/2.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a
Hadamard matrix H = (hi ,j). Denote the eigenvalues of its
Laplacian by λ1, · · · , λn. Then G has PST between vertices vj and
vk at time π/2 if and only if, for each ` = 1, · · · , n,

λ` ≡ 1− hj ,`hk,` (mod 4).

Corollary: If PST occurs, then half of the eigenvalues are
0 (mod 4) and the other half are 2 (mod 4).
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A Spectral Characterisation

E.g., the square graph has PST between vertices v1 and v3...

v1 v2

v3v4

1

1

1

1 L =

(
1

2
H4
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0 4 0 0
0 0 2 0
0 0 0 2
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2
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)T
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1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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A Spectral Characterisation

This result can help us create graphs with PST.

I E.g., There is no unweighted Hadamard-diagonalizable graph
on 12 vertices that has PST. But...

I The (essentially unique) 12× 12 Hadamard is

H12 =


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A Spectral Characterisation

To make a graph with PST between vertices v1 and v2, we
construct a set of integer eigenvalues that are 0 or 2 (mod 4)
according to the second row of H12:

1,−1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1.

One possible choice:

0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18.

Then we set Λ = diag(0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18)
and

L =
1

12
HT
12ΛH12.
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A Spectral Characterisation

It is straightforward to calculate

L =
1

12
HT

12ΛH12

=



18 0 −1 −1 −1 −3 −3 −3 −1 −3 −1 −1
0 18 −1 −1 −1 −3 −3 −3 −1 −3 −1 −1
−1 −1 18 −2 −2 0 −2 0 −2 −2 −4 −2
−1 −1 −2 18 −4 0 0 −2 −2 −2 −2 −2
−1 −1 −2 −4 18 −2 −2 0 −2 0 −2 −2
−3 −3 0 0 −2 18 −2 −2 0 −2 −2 −2
−3 −3 −2 0 −2 −2 18 −2 −2 −2 0 0
−3 −3 0 −2 0 −2 −2 18 −2 −2 −2 0
−1 −1 −2 −2 −2 0 −2 −2 18 0 −2 −4
−3 −3 −2 −2 0 −2 −2 −2 0 18 0 −2
−1 −1 −4 −2 −2 −2 0 −2 −2 0 18 −2
−1 −1 −2 −2 −2 −2 0 0 −4 −2 −2 18


This is (necessarily, by construction) the Laplacian of a graph with PST.
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Merge of Graphs

Suppose that G1 and G2 are two weighted graphs that are both
diagonalizable by a Hadamard matrix H, with Laplacians
L1 = D1 − A1 and L2 = D2 − A2, respectively.

We define their merge with respect to the weights w1 and w2 to
be the graph G1 �w1 w2

G2 with Laplacian[
w1L1 + w2D2 −w2A2

−w2A2 w1L1 + w2D2

]
.

When w1 = w2 = 1, we denote the merge simply by G1 � G2.
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Using the Merge to Create Graphs with PST

Our main interest in the merge comes from the fact that we can
use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G1 and G2 are integer-weighted graphs with regularities
d1 and d2, respectively, both of which are diagonalizable by the
same Hadamard matrix H. Then G1 �w1 w2

G2 has PST between
vertices vj and vk at time π/2 if and only if one of the following 8
conditions holds:

1) j , k ∈ {1, . . . , n} and

1.a) w1 is odd, w2 is even, and G1 has PST between vj and vk at
time π/2, or

1.b) w1 and d2 are even, w2 is odd, and G2 has PST between vj
and vk at time π/2, or

1.c) w1 and w2 are odd, d2 is even, and the weighted graph with
Laplacian L1 + L2 has PST between vj and vk at time π/2;
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Using the Merge to Create Graphs with PST

2) j , k ∈ {n + 1, . . . , 2n} and

2.a) w1 is odd, w2 is even, and G1 has PST between vj−n and vk−n

at time π/2, or
2.b) w1 and d2 are even, w2 is odd, and G2 has PST between vj−n

and vk−n at time π/2, or
2.c) w1 and w2 are odd, d2 is even, and the weighted graph with

Laplacian L1 +L2 has PST between vj−n and vk−n at time π/2;

3) j ∈ {1, . . . , n}, k ∈ {n + 1, . . . , 2n} and

3.a) w1 is even, w2 and d2 are odd, and G2 has PST between vj
and vk−n at time π/2, or

3.b) w1, w2, and d2 are all odd, and the weighted graph with
Laplacian matrix L1 + L2 has PST between vj and vk−n at
time π/2.
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Using the Merge to Create Graphs with PST

I If both w1 and w2 are even, the merge G1 �w1 w2
G2 does not

have PST at time π/2.

I However, it will have PST at some other time via re-scaling
(divide by the highest common power of 2 factor of w1, w2).

I One simple corollary of this fact is that many different
weightings of the hypercube have PST at time π/2...
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Using the Merge to Create Graphs with PST

Corollary (PST of Weighted Hypercube)

Suppose w1,w2, . . . ,wn are nonzero integers, exactly d of which
are odd, and consider the weighted hypercube
Cn := (w1K2)�(w2K2)� · · ·�(wnK2). For each vertex vj of Cn,
there is a vertex vk at distance d from vj such that there is PST
from vj to vk at time π/2.
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Open Questions

I Are there Hadamard-diagonalizable graphs with PST of all
sizes that are a multiple of 4?

I Is there a Hadamard-diagonalizable graph with PST
associated with each Hadamard matrix?

I If G is unweighted, Hadamard diagonalizable, r -regular, has n
vertices, and has PST at time π/2. Is it the case that n ≤ 2r?

I More examples of Hadamard-diagonalizable graphs with PST?
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