Hadamard-Diagonalizable Graphs with Perfect Quantum State Transfer

Nathaniel Johnston, joint work with S. Kirkland, S. Plosker, R. Storey, and X. Zhang MountAllison

Workshop on Algebraic Graph Theory & Quantum Walks Waterloo, Ontario, Canada

April 25, 2018

- ► A Hadamard Matrix H is an n×n matrix whose entries are all 1 or -1 and satisfies HH^T = nI (equivalently, its rows and/or columns are mutually orthogonal).
- The standard Hadamard matrices of order 2ⁿ are

- ► A Hadamard Matrix H is an n×n matrix whose entries are all 1 or -1 and satisfies HH^T = nI (equivalently, its rows and/or columns are mutually orthogonal).
- ▶ The *standard* Hadamard matrices of order 2^{*n*} are

- ► A Hadamard Matrix H is an n×n matrix whose entries are all 1 or -1 and satisfies HH^T = nI (equivalently, its rows and/or columns are mutually orthogonal).
- ▶ The *standard* Hadamard matrices of order 2^{*n*} are

- ► A Hadamard Matrix H is an n×n matrix whose entries are all 1 or -1 and satisfies HH^T = nI (equivalently, its rows and/or columns are mutually orthogonal).
- ▶ The *standard* Hadamard matrices of order 2^{*n*} are

Adjacency matrix of a (weighted) graph

► The adjacency matrix of a (weighted) graph is the n × n matrix A = (a_{j,k}) defined by

$$a_{j,k} = egin{cases} w(j,k) & ext{if j and k are adjacent} \\ 0 & ext{otherwise} \end{cases}$$

For example, the graph on the left below has adjacency matrix on the right:

Adjacency matrix of a (weighted) graph

► The adjacency matrix of a (weighted) graph is the n × n matrix A = (a_{j,k}) defined by

$$a_{j,k} = egin{cases} w(j,k) & ext{if j and k are adjacent} \\ 0 & ext{otherwise} \end{cases}$$

For example, the graph on the left below has adjacency matrix on the right:

► The Laplacian matrix of a (weighted) graph is the n × n matrix L = D − A where A is its adjacency matrix and D is its diagonal degree matrix.

► The Laplacian matrix of a (weighted) graph is the n × n matrix L = D − A where A is its adjacency matrix and D is its diagonal degree matrix.

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- ▶ Row sums 0. Equivalently...
- $(1, 1, \ldots, 1)$ is an eigenvector with eigenvalue 0.
- The multiplicity of the eigenvalue 0 is the number of connected components.

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1, 1, \dots, 1)$ is an eigenvector with eigenvalue 0.
- The multiplicity of the eigenvalue 0 is the number of connected components.

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1, 1, \dots, 1)$ is an eigenvector with eigenvalue 0.
- The multiplicity of the eigenvalue 0 is the number of connected components.

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1, 1, \dots, 1)$ is an eigenvector with eigenvalue 0.
- The multiplicity of the eigenvalue 0 is the number of connected components.

- Symmetric.
- Positive semidefinite (since it is diagonally dominant).
- Row sums 0. Equivalently...
- $(1, 1, \ldots, 1)$ is an eigenvector with eigenvalue 0.
- The multiplicity of the eigenvalue 0 is the number of connected components.

- Since L is symmetric, e^{itL} is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_j and v_k then all other entries in the j-th row and k-th column of e^{itL} are 0.
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{itL}|j\rangle = |k\rangle$.
- ► Morally, this means we have transferred the quantum state from vertex v_j to vertex v_k of the graph (perfectly—without any noise/errors).

- Since L is symmetric, e^{itL} is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_j and v_k then all other entries in the j-th row and k-th column of e^{itL} are 0.
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{itL}|j\rangle = |k\rangle$.
- ▶ Morally, this means we have transferred the quantum state from vertex v_j to vertex v_k of the graph (perfectly—without any noise/errors).

- Since L is symmetric, e^{itL} is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_j and v_k then all other entries in the j-th row and k-th column of e^{itL} are 0.
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{itL}|j\rangle = |k\rangle$.
- ► Morally, this means we have transferred the quantum state from vertex v_j to vertex v_k of the graph (perfectly—without any noise/errors).

- Since L is symmetric, e^{itL} is unitary, so none of its entries have magnitude larger than 1. Also, if PST occurs between vertices v_j and v_k then all other entries in the j-th row and k-th column of e^{itL} are 0.
- Motivation: This means that after time t, the quantum state $|j\rangle$ evolves into the state $e^{itL}|j\rangle = |k\rangle$.
- ► Morally, this means we have transferred the quantum state from vertex v_j to vertex v_k of the graph (perfectly—without any noise/errors).

Question (The BIG Question)

- \triangleright P_2 and P_3 .
- Square, cube, hypercube.
- Let's find more.

Question (The BIG Question)

- P_2 and P_3 .
- Square, cube, hypercube.
- Let's find more.

Question (The BIG Question)

- P_2 and P_3 .
- Square, cube, hypercube.
- Let's find more.

Question (The BIG Question)

- P_2 and P_3 .
- Square, cube, hypercube.
- Let's find more.

- ▶ It is more convenient to diagonalize by a scaled Hadamard $U = \frac{1}{\sqrt{n}}H$ so that $U^T L U$ contains the eigenvalues of L along its diagonal.
- ▶ For example, the square graph is Hadamard-diagonalizable:

- It is more convenient to diagonalize by a scaled Hadamard $U = \frac{1}{\sqrt{n}}H$ so that $U^T L U$ contains the eigenvalues of L along its diagonal.
- ▶ For example, the square graph is Hadamard-diagonalizable:

- It is more convenient to diagonalize by a scaled Hadamard $U = \frac{1}{\sqrt{n}}H$ so that $U^T L U$ contains the eigenvalues of L along its diagonal.
- ► For example, the square graph is Hadamard-diagonalizable:

$$\begin{array}{cccc} \overbrace{\mathbf{v}_{1} & 1 & \overbrace{\mathbf{v}_{2}} \\ 1 & 1 & 1 \\ \hline \mathbf{v}_{4} & 1 & \hline \mathbf{v}_{3} \end{array} & L = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \\ = \begin{pmatrix} \frac{1}{2}H_{4} \end{pmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{pmatrix} \frac{1}{2}H_{4} \end{pmatrix}^{T}.$$

- It is more convenient to diagonalize by a scaled Hadamard $U = \frac{1}{\sqrt{n}}H$ so that $U^T L U$ contains the eigenvalues of L along its diagonal.
- For example, the square graph is Hadamard-diagonalizable:

$$\begin{array}{cccc} \underbrace{v_1} & 1 & v_2 \\ 1 & 1 & 1 \\ \hline v_4 & 1 & v_3 \\ \hline v_4 & 1 & v_3 \end{array} \qquad \qquad L = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{pmatrix} \frac{1}{2}H_4 \end{pmatrix}^T.$$

- Barik–Fallat–Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
 - ► *G* is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
 - The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

- Barik–Fallat–Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
 - ► *G* is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
 - ► The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

- Barik–Fallat–Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
 - ► G is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
 - ► The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

- Barik–Fallat–Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
 - ► *G* is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
 - The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

- Barik–Fallat–Kirkland (2011) says if a graph G has integer weights and is Hadamard-diagonalizable then:
 - ► *G* is regular (i.e., the sum of the edge weights adjacent to each vertex is constant).
 - The eigenvalues of its Laplacian are even integers.
- Integer weights can be extended to rational weights via scaling (changes the time of PST).

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.

- Hadamard diagonalizability is thus more general than being cubelike.
- We don't consider just unweighted graphs or just the standard Hadamard.

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.

- Hadamard diagonalizability is thus more general than being cubelike.
- We don't consider just unweighted graphs or just the standard Hadamard.

Relationship with Cubelike Graphs

Lemma (Hadamard-Diagonalizability and Cubelike Graphs)

An unweighted graph is diagonalizable by the standard Hadamard if and only if it is cubelike.

- Hadamard diagonalizability is thus more general than being cubelike.
- We don't consider just unweighted graphs or just the standard Hadamard.

A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi/2$.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a Hadamard matrix $H = (h_{i,j})$. Denote the eigenvalues of its Laplacian by $\lambda_1, \dots, \lambda_n$. Then G has PST between vertices v_j and v_k at time $\pi/2$ if and only if, for each $\ell = 1, \dots, n$,

$$\lambda_{\ell} \equiv 1 - h_{j,\ell} h_{k,\ell} \pmod{4}.$$

Corollary: If PST occurs, then half of the eigenvalues are 0 (mod 4) and the other half are 2 (mod 4).

A Spectral Characterisation

Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi/2$.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a Hadamard matrix $H = (h_{i,j})$. Denote the eigenvalues of its Laplacian by $\lambda_1, \dots, \lambda_n$. Then G has PST between vertices v_j and v_k at time $\pi/2$ if and only if, for each $\ell = 1, \dots, n$,

$$\lambda_{\ell} \equiv 1 - h_{j,\ell} h_{k,\ell} \pmod{4}.$$

Corollary: If PST occurs, then half of the eigenvalues are 0 (mod 4) and the other half are 2 (mod 4).
Given a spectral decomposition of a Hadamard-diagonalizable graph, the following theorem shows that it is easy to determine whether or not PST occurs at time $\pi/2$.

Theorem (PST from Spectrum)

Let G be an integer-weighted graph that is diagonalizable by a Hadamard matrix $H = (h_{i,j})$. Denote the eigenvalues of its Laplacian by $\lambda_1, \dots, \lambda_n$. Then G has PST between vertices v_j and v_k at time $\pi/2$ if and only if, for each $\ell = 1, \dots, n$,

$$\lambda_{\ell} \equiv 1 - h_{j,\ell} h_{k,\ell} \pmod{4}.$$

Corollary: If PST occurs, then half of the eigenvalues are $0 \pmod{4}$ and the other half are $2 \pmod{4}$.

E.g., the square graph has PST between vertices v_1 and v_3 ...

since

E.g., the square graph has PST between vertices v_1 and v_3 ...

since

E.g., the square graph has PST between vertices v_1 and v_3 ...

since

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- ▶ The (essentially unique) 12 × 12 Hadamard is

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- The (essentially unique) 12×12 Hadamard is

This result can help us create graphs with PST.

- E.g., There is no unweighted Hadamard-diagonalizable graph on 12 vertices that has PST. But...
- The (essentially unique) 12×12 Hadamard is

	Γ1	1	1	1	1	1	1	1	1	1	1	1]
	1	$^{-1}$	1	$^{-1}$	1	1	1	$^{-1}$	-1	$^{-1}$	1	-1
	1	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1	1	-1	$^{-1}$	$^{-1}$	1
	1	1	$^{-1}$	$^{-1}$	1	-1	1	1	1	$^{-1}$	$^{-1}$	-1
	1	$^{-1}$	1	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1	1	$^{-1}$	-1
$H_{12} =$	1	$^{-1}$	$^{-1}$	1	$^{-1}$	-1	1	$^{-1}$	1	1	1	-1
	1	$^{-1}$	$^{-1}$	$^{-1}$	1	-1	$^{-1}$	1	-1	1	1	1
	1	1	$^{-1}$	$^{-1}$	$^{-1}$	1	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1
	1	1	1	$^{-1}$	$^{-1}$	-1	1	$^{-1}$	-1	1	$^{-1}$	1
	1	1	1	1	$^{-1}$	-1	$^{-1}$	1	-1	$^{-1}$	1	-1
	1	$^{-1}$	1	1	1	-1	$^{-1}$	$^{-1}$	1	$^{-1}$	$^{-1}$	1
	[1	1	$^{-1}$	1	1	1	$^{-1}$	$^{-1}$	$^{-1}$	1	$^{-1}$	-1

To make a graph with PST between vertices v_1 and v_2 , we construct a set of integer eigenvalues that are 0 or 2 (mod 4) according to the second row of H_{12} :

1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1.

One possible choice:

0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18.

Then we set $\Lambda = diag(0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18)$ and

$$L=\frac{1}{12}H_{12}^{T}\Lambda H_{12}.$$

To make a graph with PST between vertices v_1 and v_2 , we construct a set of integer eigenvalues that are 0 or 2 (mod 4) according to the second row of H_{12} :

$$1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1.$$

One possible choice:

0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18.

Then we set $\Lambda = diag(0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18)$ and

$$L=\frac{1}{12}H_{12}^{T}\Lambda H_{12}.$$

To make a graph with PST between vertices v_1 and v_2 , we construct a set of integer eigenvalues that are 0 or 2 (mod 4) according to the second row of H_{12} :

$$1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1.$$

One possible choice:

0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18.

Then we set $\Lambda = diag(0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18)$ and

$$L = \frac{1}{12} H_{12}^{\mathsf{T}} \wedge H_{12}.$$

To make a graph with PST between vertices v_1 and v_2 , we construct a set of integer eigenvalues that are 0 or 2 (mod 4) according to the second row of H_{12} :

$$1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1.$$

One possible choice:

0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18.

Then we set $\Lambda = {\rm diag}(0, 18, 24, 18, 24, 24, 24, 18, 18, 18, 12, 18)$ and

$$L=\frac{1}{12}H_{12}^{T}\Lambda H_{12}.$$

It is straightforward to calculate

This is (necessarily, by construction) the Laplacian of a graph with PST.

It is straightforward to calculate

L = ;	$\frac{1}{12}H_{12}^{T}$	ΛH_{12}										
=	[18	0	$^{-1}$	$^{-1}$	$^{-1}$	-3	-3	-3	$^{-1}$	-3	$^{-1}$	-17
	0	18	$^{-1}$	-1	$^{-1}$	-3	-3	-3	$^{-1}$	-3	$^{-1}$	-1
	-1	$^{-1}$	18	$^{-2}$	$^{-2}$	0	$^{-2}$	0	$^{-2}$	$^{-2}$	-4	-2
	-1	$^{-1}$	-2	18	-4	0	0	-2	-2	-2	-2	-2
	-1	$^{-1}$	-2	-4	18	-2	-2	0	-2	0	-2	-2
	-3	-3	0	0	-2	18	-2	-2	0	-2	-2	-2
	-3	-3	-2	0	-2	-2	18	-2	-2	-2	0	0
	-3	-3	0	$^{-2}$	0	-2	-2	18	-2	-2	-2	0
	-1	$^{-1}$	$^{-2}$	$^{-2}$	$^{-2}$	0	-2	$^{-2}$	18	0	$^{-2}$	-4
	-3	-3	$^{-2}$	$^{-2}$	0	$^{-2}$	$^{-2}$	$^{-2}$	0	18	0	-2
	-1	$^{-1}$	-4	$^{-2}$	$^{-2}$	-2	0	$^{-2}$	-2	0	18	-2
	-1	$^{-1}$	$^{-2}$	$^{-2}$	$^{-2}$	$^{-2}$	0	0	-4	$^{-2}$	$^{-2}$	18

This is (necessarily, by construction) the Laplacian of a graph with PST.

It is straightforward to calculate

L = ;	$\frac{1}{12}H_{12}^{T}$	$_{2}^{\Lambda}H_{12}$										
=	[18	0	$^{-1}$	$^{-1}$	$^{-1}$	-3	-3	-3	$^{-1}$	-3	$^{-1}$	-17
	0	18	$^{-1}$	$^{-1}$	$^{-1}$	-3	-3	-3	$^{-1}$	-3	$^{-1}$	-1
	-1	$^{-1}$	18	-2	-2	0	-2	0	-2	-2	-4	-2
	-1	$^{-1}$	-2	18	-4	0	0	-2	-2	-2	-2	-2
	-1	$^{-1}$	-2	-4	18	-2	-2	0	-2	0	-2	-2
	-3	-3	0	0	-2	18	-2	-2	0	-2	-2	-2
	-3	-3	-2	0	-2	-2	18	-2	-2	-2	0	0
	-3	-3	0	-2	0	-2	-2	18	-2	-2	-2	0
	-1	$^{-1}$	-2	-2	-2	0	-2	-2	18	0	-2	-4
	-3	-3	-2	-2	0	-2	-2	-2	0	18	0	-2
	-1	$^{-1}$	-4	-2	-2	-2	0	-2	-2	0	18	-2
	-1	$^{-1}$	$^{-2}$	$^{-2}$	$^{-2}$	$^{-2}$	0	0	-4	$^{-2}$	$^{-2}$	18

This is (necessarily, by construction) the Laplacian of a graph with PST.

Merge of Graphs

Suppose that G_1 and G_2 are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_1 = D_1 - A_1$ and $L_2 = D_2 - A_2$, respectively.

We define their **merge** with respect to the weights w_1 and w_2 to be the graph $G_1_{w_1} \odot_{w_2} G_2$ with Laplacian

$$\begin{bmatrix} w_1 L_1 + w_2 D_2 & -w_2 A_2 \\ -w_2 A_2 & w_1 L_1 + w_2 D_2 \end{bmatrix}$$

When $w_1 = w_2 = 1$, we denote the merge simply by $G_1 \odot G_2$.

Merge of Graphs

Suppose that G_1 and G_2 are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_1 = D_1 - A_1$ and $L_2 = D_2 - A_2$, respectively.

We define their **merge** with respect to the weights w_1 and w_2 to be the graph $G_1_{w_1} \odot_{w_2} G_2$ with Laplacian

$$\begin{bmatrix} w_1 L_1 + w_2 D_2 & -w_2 A_2 \\ -w_2 A_2 & w_1 L_1 + w_2 D_2 \end{bmatrix}$$

When $w_1 = w_2 = 1$, we denote the merge simply by $G_1 \odot G_2$.

Merge of Graphs

Suppose that G_1 and G_2 are two weighted graphs that are both diagonalizable by a Hadamard matrix H, with Laplacians $L_1 = D_1 - A_1$ and $L_2 = D_2 - A_2$, respectively.

We define their **merge** with respect to the weights w_1 and w_2 to be the graph $G_1_{w_1} \odot_{w_2} G_2$ with Laplacian

$$\begin{bmatrix} w_1 L_1 + w_2 D_2 & -w_2 A_2 \\ -w_2 A_2 & w_1 L_1 + w_2 D_2 \end{bmatrix}$$

When $w_1 = w_2 = 1$, we denote the merge simply by $G_1 \odot G_2$.

Example

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_1 and G_2 are integer-weighted graphs with regularities d_1 and d_2 , respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_1_{w_1} \odot_{w_2} G_2$ has PST between vertices v_j and v_k at time $\pi/2$ if and only if one of the following 8 conditions holds:

1) $j, k \in \{1, ..., n\}$ and

- 1.a) w_1 is odd, w_2 is even, and G_1 has PST between v_j and v_k at time $\pi/2$, or
- 1.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_j and v_k at time $\pi/2$, or
- 1.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_i and v_k at time $\pi/2$;

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_1 and G_2 are integer-weighted graphs with regularities d_1 and d_2 , respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_1_{w_1} \odot_{w_2} G_2$ has PST between vertices v_j and v_k at time $\pi/2$ if and only if one of the following 8 conditions holds:

1) $j, k \in \{1, ..., n\}$ and

- 1.a) w_1 is odd, w_2 is even, and G_1 has PST between v_j and v_k at time $\pi/2$, or
- 1.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_j and v_k at time $\pi/2$, or
- 1.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_j and v_k at time $\pi/2$;

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_1 and G_2 are integer-weighted graphs with regularities d_1 and d_2 , respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_1_{w_1} \odot_{w_2} G_2$ has PST between vertices v_j and v_k at time $\pi/2$ if and only if one of the following 8 conditions holds:

- 1) $j, k \in \{1, ..., n\}$ and
 - 1.a) w_1 is odd, w_2 is even, and G_1 has PST between v_j and v_k at time $\pi/2$, or
 - 1.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_j and v_k at time $\pi/2$, or
 - 1.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_j and v_k at time $\pi/2$;

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_1 and G_2 are integer-weighted graphs with regularities d_1 and d_2 , respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_1_{w_1} \odot_{w_2} G_2$ has PST between vertices v_j and v_k at time $\pi/2$ if and only if one of the following 8 conditions holds:

- 1) $j, k \in \{1, ..., n\}$ and
 - 1.a) w_1 is odd, w_2 is even, and G_1 has PST between v_j and v_k at time $\pi/2$, or
 - 1.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_j and v_k at time $\pi/2$, or
 - 1.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_j and v_k at time $\pi/2$;

Our main interest in the merge comes from the fact that we can use it to create larger graphs with PST from smaller ones.

Theorem (Merge for PST)

Suppose G_1 and G_2 are integer-weighted graphs with regularities d_1 and d_2 , respectively, both of which are diagonalizable by the same Hadamard matrix H. Then $G_1_{w_1} \odot_{w_2} G_2$ has PST between vertices v_j and v_k at time $\pi/2$ if and only if one of the following 8 conditions holds:

- 1) $j, k \in \{1, ..., n\}$ and
 - 1.a) w_1 is odd, w_2 is even, and G_1 has PST between v_j and v_k at time $\pi/2$, or
 - 1.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_j and v_k at time $\pi/2$, or
 - 1.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_i and v_k at time $\pi/2$;

- 2) $j, k \in \{n + 1, ..., 2n\}$ and
 - 2.a) w_1 is odd, w_2 is even, and G_1 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
 - 2.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
 - 2.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_{j-n} and v_{k-n} at time $\pi/2$;
- 3) $j \in \{1, \dots, n\}, \ k \in \{n+1, \dots, 2n\}$ and
 - 3.a) w_1 is even, w_2 and d_2 are odd, and G_2 has PST between v_j and v_{k-n} at time $\pi/2$, or
 - 3.b) w_1 , w_2 , and d_2 are all odd, and the weighted graph with Laplacian matrix $L_1 + L_2$ has PST between v_j and v_{k-n} at time $\pi/2$.

2)
$$j, k \in \{n + 1, ..., 2n\}$$
 and

- 2.a) w_1 is odd, w_2 is even, and G_1 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_{j-n} and v_{k-n} at time $\pi/2$;
- 3) $j \in \{1, \dots, n\}, \ k \in \{n + 1, \dots, 2n\}$ and
 - 3.a) w_1 is even, w_2 and d_2 are odd, and G_2 has PST between v_j and v_{k-n} at time $\pi/2$, or
 - 3.b) w_1 , w_2 , and d_2 are all odd, and the weighted graph with Laplacian matrix $L_1 + L_2$ has PST between v_j and v_{k-n} at time $\pi/2$.

2)
$$j, k \in \{n + 1, ..., 2n\}$$
 and

- 2.a) w_1 is odd, w_2 is even, and G_1 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_{j-n} and v_{k-n} at time $\pi/2$;
- 3) $j \in \{1, ..., n\}$, $k \in \{n + 1, ..., 2n\}$ and
 - 3.a) w_1 is even, w_2 and d_2 are odd, and G_2 has PST between v_j and v_{k-n} at time $\pi/2$, or
 - 3.b) w_1 , w_2 , and d_2 are all odd, and the weighted graph with Laplacian matrix $L_1 + L_2$ has PST between v_j and v_{k-n} at time $\pi/2$.

2)
$$j, k \in \{n + 1, ..., 2n\}$$
 and

- 2.a) w_1 is odd, w_2 is even, and G_1 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_{j-n} and v_{k-n} at time $\pi/2$;

3)
$$j \in \{1, ..., n\}$$
, $k \in \{n + 1, ..., 2n\}$ and

- 3.a) w_1 is even, w_2 and d_2 are odd, and G_2 has PST between v_j and v_{k-n} at time $\pi/2$, or
- 3.b) w_1 , w_2 , and d_2 are all odd, and the weighted graph with Laplacian matrix $L_1 + L_2$ has PST between v_j and v_{k-n} at time $\pi/2$.

2)
$$j, k \in \{n + 1, ..., 2n\}$$
 and

- 2.a) w_1 is odd, w_2 is even, and G_1 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.b) w_1 and d_2 are even, w_2 is odd, and G_2 has PST between v_{j-n} and v_{k-n} at time $\pi/2$, or
- 2.c) w_1 and w_2 are odd, d_2 is even, and the weighted graph with Laplacian $L_1 + L_2$ has PST between v_{j-n} and v_{k-n} at time $\pi/2$;

3)
$$j \in \{1, ..., n\}$$
, $k \in \{n + 1, ..., 2n\}$ and

- 3.a) w_1 is even, w_2 and d_2 are odd, and G_2 has PST between v_j and v_{k-n} at time $\pi/2$, or
- 3.b) w_1 , w_2 , and d_2 are all odd, and the weighted graph with Laplacian matrix $L_1 + L_2$ has PST between v_j and v_{k-n} at time $\pi/2$.

- ▶ If both w_1 and w_2 are even, the merge $G_1 \ _{w_1} \odot_{w_2} G_2$ does not have PST at time $\pi/2$.
- ▶ However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w₁, w₂).
- One simple corollary of this fact is that many different weightings of the hypercube have PST at time π/2...

- ▶ If both w_1 and w_2 are even, the merge $G_1 _{w_1} \odot_{w_2} G_2$ does not have PST at time $\pi/2$.
- However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w₁, w₂).
- One simple corollary of this fact is that many different weightings of the hypercube have PST at time π/2...

- If both w₁ and w₂ are even, the merge G₁ w₁⊙w₂ G₂ does not have PST at time π/2.
- However, it will have PST at some other time via re-scaling (divide by the highest common power of 2 factor of w₁, w₂).
- ► One simple corollary of this fact is that many different weightings of the hypercube have PST at time π/2...

Corollary (PST of Weighted Hypercube)

Suppose $w_1, w_2, ..., w_n$ are nonzero integers, exactly d of which are odd, and consider the weighted hypercube $C_n := (w_1K_2) \Box (w_2K_2) \Box \cdots \Box (w_nK_2)$. For each vertex v_j of C_n , there is a vertex v_k at distance d from v_j such that there is PST from v_j to v_k at time $\pi/2$.

Corollary (PST of Weighted Hypercube)

Suppose $w_1, w_2, ..., w_n$ are nonzero integers, exactly d of which are odd, and consider the weighted hypercube $C_n := (w_1K_2) \Box (w_2K_2) \Box \cdots \Box (w_nK_2)$. For each vertex v_j of C_n , there is a vertex v_k at distance d from v_j such that there is PST from v_j to v_k at time $\pi/2$.

Open Questions

Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?

- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time π/2. Is it the case that n ≤ 2^r?
- More examples of Hadamard-diagonalizable graphs with PST?

arXiv:1610.06094

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time π/2. Is it the case that n ≤ 2^r?
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time π/2. Is it the case that n ≤ 2^r?

More examples of Hadamard-diagonalizable graphs with PST?
Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time π/2. Is it the case that n ≤ 2^r? True if r ≤ 4.
- More examples of Hadamard-diagonalizable graphs with PST?

Open Questions

- Are there Hadamard-diagonalizable graphs with PST of all sizes that are a multiple of 4?
- Is there a Hadamard-diagonalizable graph with PST associated with each Hadamard matrix?
- If G is unweighted, Hadamard diagonalizable, r-regular, has n vertices, and has PST at time π/2. Is it the case that n ≤ 2^r? True if r ≤ 4.
- More examples of Hadamard-diagonalizable graphs with PST?