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De�nition

A Hermitian matrix W ∈ Mm ⊗Mn is called an entanglement

witness if

(〈a| ⊗ 〈b|)W (|a〉 ⊗ |b〉) ≥ 0 for all |a〉 ∈ Cm, |b〉 ∈ Cn.

Equivalently, W = (I ⊗ Φ)(X ) for some positive semide�nite

X ∈ Mm ⊗Mn and positive linear map Φ.

Useful because they can detect entanglement in quantum

states.
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In this talk, entanglement witnesses might be positive semide�nite.

This is not the usual convention, but it makes our results a bit

easier to state.

The �standard example� is the following matrix in M2 ⊗M2:

(I ⊗ T )



1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

The above matrix has eigenvalues 1, 1, 1, and −1, so it is not

positive semide�nite.
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Question

What are the possible spectra of entanglement witnesses?

For example, can entanglement witnesses W ∈ M2 ⊗M2 have more

than one negative eigenvalue?
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Theorem

If W ∈ Mm ⊗Mn is an entanglement witness, then it has no more

than (m − 1)(n − 1) negative eigenvalues.

Follows from the fact that entangled subspaces can have

dimension no larger than (m − 1)(n − 1).

If m = n = 2, then W can have no more than 1 negative

eigenvalue.
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OK, could we make that one negative eigenvalue more negative?

For example, does there exist an entanglement witness

W ∈ M2 ⊗M2 with eigenvalues 1, 1, 1, c , where c < −1?

Theorem (J.�Kribs, 2010, likely known before that though)

If W ∈ Mm ⊗Mn is an entanglement witness, then

λmin(W )/λmax(W ) ≥ 1−min{m, n}.

Proof is straightforward.

If m = n = 2 and λmax(W ) = 1 then λmin(W ) ≥ −1.
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Can we do better? Well, in small dimensions...

Theorem (J.�Patterson)

There exists an entanglement witness in M2 ⊗M2 with eigenvalues

µ1 ≥ µ2 ≥ µ3 ≥ µ4 if and only if the following inequalities hold:

µ3 ≥ 0,

µ4 ≥ −µ2, and
µ4 ≥ −

√
µ1µ3.
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We can visualize the set of possible spectra by scaling W so that

Tr(W ) = 1. Then µ4 = 1− µ1 − µ2 − µ3 and the (unsorted)

(µ1, µ2, µ3) region looks like:
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Proof sketch:

Every entanglement witness W ∈ M2 ⊗M2 can be written in

the form W = X + (I ⊗ T )(Y ), where X ,Y ∈ M2 ⊗M2 are

PSD

If Y = |v〉〈v | is PSD with rank 1, eigenvalues of (I ⊗ T )(Y )
are easy to compute in terms of the Schmidt coe�cients of |v〉.

Eigenvalues of W are no smaller than those of (I ⊗ T )(Y ).
Done.
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Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where

n ≥ 2.

This problem is much harder. Even when n = 3, a complete

characterization is beyond us.

To simplify things, we instead characterize the possible convex

combinations of (unsorted) spectra of entanglement witnesses

(we denote this set by Conv
(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Entanglement Witnesses



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit�Qudit Entanglement Witnesses

Qubit�Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where

n ≥ 2.

This problem is much harder. Even when n = 3, a complete

characterization is beyond us.

To simplify things, we instead characterize the possible convex

combinations of (unsorted) spectra of entanglement witnesses

(we denote this set by Conv
(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Entanglement Witnesses



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit�Qudit Entanglement Witnesses

Qubit�Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where

n ≥ 2.

This problem is much harder. Even when n = 3, a complete

characterization is beyond us.

To simplify things, we instead characterize the possible convex

combinations of (unsorted) spectra of entanglement witnesses

(we denote this set by Conv
(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Entanglement Witnesses



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit�Qudit Entanglement Witnesses

Qubit�Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where

n ≥ 2.

This problem is much harder. Even when n = 3, a complete

characterization is beyond us.

To simplify things, we instead characterize the possible convex

combinations of (unsorted) spectra of entanglement witnesses

(we denote this set by Conv
(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Entanglement Witnesses



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit�Qudit Entanglement Witnesses

Qubit�Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where

n ≥ 2.

This problem is much harder. Even when n = 3, a complete

characterization is beyond us.

To simplify things, we instead characterize the possible convex

combinations of (unsorted) spectra of entanglement witnesses

(we denote this set by Conv
(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Entanglement Witnesses



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit�Qudit Entanglement Witnesses

Qubit�Qudit Entanglement Witnesses

Theorem (J.�Patterson)

Suppose ~µ ∈ R2n. De�ne sk :=
∑2n

j=k µ
↓
j for k = 1, 2, 3 and

s− :=
∑
{j :µj<0} µj . Then the following are equivalent:

(a) ~µ ∈ Conv
(
σ(EW2,n)

)
.

(b) There exists a real PSD matrix X ∈ M2 such that

x1,1 + x2,2 ≤ s1, x2,2 ≤ s2, x1,2 + x2,2 ≤ s3, and x1,2 ≤ s−.

(c) If we de�ne q1 := s21 − 4s2− and q2 := (s1 + 2s3)2 − 8s23 then:

q1, q2 ≥ 0
√
q1 ≥ s1 − 2s2
√
q2 ≥ s1 − 4s2 + 2s3

2
√
q1 +

√
q2 ≥ s1 − 2s3.
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Theorem (J.�Patterson)
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∑2n

j=k µ
↓
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)
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Each of the inequalities described by part (c) of that theorem is a

necessary condition that the spectra of entanglement witnesses

must satisfy.

These inequalities are not su�cient, even if n = 2.

However, they are considerably stronger than all

previously-known necessary conditions.

Exact necessary and su�cient conditions are likely

unreasonable to hope for (even inverse eigenvalue problems for

�simple� matrices like entrywise non-negative matrices are very

hard).
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We can visualize the necessary conditions of this theorem in the

two-qubit case just like before, and it looks like:
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Decomposable Entanglement Witnesses

When going to even higher dimensions (Mm ⊗Mn with m, n ≥ 3),

we have to sacri�ce even more.

Our methods now only work for decomposable entanglement

witnesses: those of the form W = X + (I ⊗ T )(Y ), with X
and Y positive semide�nite.

Not every entanglement witness is decomposable.

We can characterize the set Conv
(
σ(DEWm,n)

)
(DEW stands

for �decomposable entanglement witness�) for all m, n (but the

theorem is too ugly for 8:30am).
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Decomposable Entanglement Witnesses

For example, ~µ ∈ Conv
(
σ(DEW3,3)

)
if and only if there exist real

PSD matrices X ,Y ∈ M3 such that...

(x1,1 + x2,2 + x3,3) + (y1,1 + y2,2 + y3,3) ≤ s1

(x2,2 + x3,3) + (y2,2 + y3,3) ≤ s2

(x2,2 + x3,3 − x1,2) + (y2,2 + y3,3 − y1,2) ≤ s3

(x3,3 − x1,2) + (y2,2 + y3,3 − y1,2 − y1,3) ≤ s4

(x3,3 − x1,2 − x1,3) + (y3,3 − y1,2 − y1,3) ≤ s5

(x3,3 − x1,2 − x1,3 − x2,3) + (y3,3 − y1,2 − y1,3 − y2,3) ≤ s6

(−x1,2 − x1,3 − x2,3) + (−y1,2 − y1,3 − y2,3) ≤ s7

(−x1,2 − x1,3) + (−y1,2 − y1,3) ≤ s8

−x1,2 − y1,2 ≤ s9
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Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable)

entanglement witnesses when m, n ≥ 3.

Can we �nd a spectrum that is attained by an entanglement

witness but not a decomposable entanglement witness?

Determining whether or not

Conv
(
σ(EWm,n)

)
= Conv

(
σ(DEWm,n)

)
would settle a

long-standing question about �absolutely separable� states.

Speci�c cases of the above question might be more tractable.

For example, does there exist an entanglement witness in

M3 ⊗M3 with eigenvalues (1, 1, 1, 1, 1, 1,−1,−1, c) for some

c < −1?
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