The Spectra of Entanglement Witnesses

Nathaniel Johnston and Everett Patterson

Mount Allison

Winter 2017 CMS Meeting Waterloo, Ontario, Canada

December 11, 2017

Definition

A Hermitian matrix $W \in M_m \otimes M_n$ is called an entanglement witness if

$$(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b\rangle)\geq 0 \quad \text{for all} \quad |a\rangle\in\mathbb{C}^m, |b\rangle\in\mathbb{C}^n.$$

- Equivalently, $W = (I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_m \otimes M_n$ and positive linear map Φ .
- Useful because they can detect entanglement in quantum states.

Definition

A Hermitian matrix $W \in M_m \otimes M_n$ is called an **entanglement** witness if

$$(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b\rangle)\geq 0 \quad \text{for all} \quad |a\rangle\in\mathbb{C}^m, |b\rangle\in\mathbb{C}^n.$$

- Equivalently, $W = (I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_m \otimes M_n$ and positive linear map Φ .
- Useful because they can detect entanglement in quantum states.

Definition

A Hermitian matrix $W \in M_m \otimes M_n$ is called an **entanglement** witness if

$$(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b\rangle)\geq 0 \quad \text{for all} \quad |a\rangle\in\mathbb{C}^m, |b\rangle\in\mathbb{C}^n.$$

- Equivalently, $W = (I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_m \otimes M_n$ and positive linear map Φ .
- Useful because they can detect entanglement in quantum states.

In this talk, entanglement witnesses might be positive semidefinite.

This is not the usual convention, but it makes our results a bit easier to state

• The "standard example" is the following matrix in $M_2 \otimes M_2$:

$$(I \otimes T) \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

• The "standard example" is the following matrix in $M_2 \otimes M_2$:

$$(I \otimes T) \left(egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{bmatrix}
ight) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

ullet The "standard example" is the following matrix in $M_2\otimes M_2$:

$$(I\otimes T)\left(egin{bmatrix}1&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&1\end{bmatrix}
ight)=egin{bmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\end{bmatrix}.$$

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

ullet The "standard example" is the following matrix in $M_2\otimes M_2$:

$$(I \otimes T) \left(egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{bmatrix}
ight) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Question

What are the possible spectra of entanglement witnesses?

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Question

What are the possible spectra of entanglement witnesses?

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Theorem

If $W \in M_m \otimes M_n$ is an entanglement witness, then it has no more than (m-1)(n-1) negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Theorem

If $W \in M_m \otimes M_n$ is an entanglement witness, then it has no more than (m-1)(n-1) negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Theorem

If $W \in M_m \otimes M_n$ is an entanglement witness, then it has no more than (m-1)(n-1) negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, c, where c < -1?

Theorem (J.–Kribs, 2010, likely known before that though) If $W \in M_m \otimes M_n$ is an entanglement witness, then

Proof is straightforward.

• If
$$m=n=2$$
 and $\lambda_{\max}(W)=1$ then $\lambda_{\min}(W)\geq -1$.

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, c, where c < -1?

Theorem (J.-Kribs, 2010, likely known before that though)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

$$\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$$

- Proof is straightforward.
- If m=n=2 and $\lambda_{\max}(W)=1$ then $\lambda_{\min}(W)\geq -1$.

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, c, where c < -1?

Theorem (J.–Kribs, 2010, likely known before that though)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

$$\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$$

- Proof is straightforward.
- If m=n=2 and $\lambda_{\max}(W)=1$ then $\lambda_{\min}(W)\geq -1$.

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, c, where c < -1?

Theorem (J.-Kribs, 2010, likely known before that though)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

$$\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$$

- Proof is straightforward.
- If m=n=2 and $\lambda_{\mathsf{max}}(W)=1$ then $\lambda_{\mathsf{min}}(W)\geq -1$.

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \geq \mu_2 \geq \mu_3 \geq \mu_4$ if and only if the following inequalities hold:

- $\mu_3 \ge 0$
- \bullet $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}$

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \geq \mu_2 \geq \mu_3 \geq \mu_4$ if and only if the following inequalities hold:

- $\mu_3 \geq 0$,
- $\mu_4 \ge -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}$.

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \ge \mu_2 \ge \mu_3 \ge \mu_4$ if and only if the following inequalities hold:

- $\mu_3 \ge 0$,
- $\mu_4 \ge -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}$.

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \geq \mu_2 \geq \mu_3 \geq \mu_4$ if and only if the following inequalities hold:

- $\mu_3 \geq 0$,
- \bullet $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}$.

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \geq \mu_2 \geq \mu_3 \geq \mu_4$ if and only if the following inequalities hold:

- $\mu_3 \geq 0$,
- \bullet $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}$.

We can visualize the set of possible spectra by scaling W so that $\mathrm{Tr}(W)=1$. Then $\mu_4=1-\mu_1-\mu_2-\mu_3$ and the (unsorted) (μ_1,μ_2,μ_3) region looks like:

We can visualize the set of possible spectra by scaling W so that $\mathrm{Tr}(W)=1$. Then $\mu_4=1-\mu_1-\mu_2-\mu_3$ and the (unsorted) (μ_1,μ_2,μ_3) region looks like:

- Every entanglement witness $W \in M_2 \otimes M_2$ can be written in the form $W = X + (I \otimes T)(Y)$, where $X, Y \in M_2 \otimes M_2$ are PSD
- If $Y = |v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness $W \in M_2 \otimes M_2$ can be written in the form $W = X + (I \otimes T)(Y)$, where $X, Y \in M_2 \otimes M_2$ are PSD
- If $Y = |v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness $W \in M_2 \otimes M_2$ can be written in the form $W = X + (I \otimes T)(Y)$, where $X, Y \in M_2 \otimes M_2$ are PSD and Y has rank 1.
- If $Y = |v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness $W \in M_2 \otimes M_2$ can be written in the form $W = X + (I \otimes T)(Y)$, where $X, Y \in M_2 \otimes M_2$ are PSD and Y has rank 1.
- If $Y = |v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness $W \in M_2 \otimes M_2$ can be written in the form $W = X + (I \otimes T)(Y)$, where $X, Y \in M_2 \otimes M_2$ are PSD and Y has rank 1.
- If $Y = |v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- This problem is much harder. Even when n=3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $Conv\left(\sigma(\mathsf{EW}_{m,n})\right)$).
- For example, $(4,2,1,-2) \in \sigma(\mathsf{EW}_{2,2})$, so

$$(4,2,1,-2)+(4,2,-2,1)=(8,4,-1,-1)\in Conv\left(\sigma(\mathsf{EW}_{2,2})\right)$$
 $\not\in \sigma(\mathsf{EW}_{2,2}).$

- This problem is much harder. Even when n=3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $Conv\left(\sigma(\mathsf{EW}_{m,n})\right)$).
- For example, $(4,2,1,-2) \in \sigma(\mathsf{EW}_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(EW_{2,2}))$$

 $\notin \sigma(EW_{2,2}).$

- This problem is much harder. Even when n=3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $Conv\left(\sigma(\mathsf{EW}_{m,n})\right)$).
- For example, $(4,2,1,-2) \in \sigma(\mathsf{EW}_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(EW_{2,2}))$$

- This problem is much harder. Even when n=3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $Conv\left(\sigma(\mathsf{EW}_{m,n})\right)$).
- For example, $(4, 2, 1, -2) \in \sigma(EW_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(EW_{2,2}))$$

 $\notin \sigma(EW_{2,2}).$

- This problem is much harder. Even when n=3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $Conv\left(\sigma(\mathsf{EW}_{m,n})\right)$).
- For example, $(4, 2, 1, -2) \in \sigma(EW_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(EW_{2,2}))$$

 $\notin \sigma(EW_{2,2}).$

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_- := \sum_{\{j: \mu_i < 0\}} \mu_j$. Then the following are equivalent:

- $\vec{\mu} \in Conv\left(\sigma(\mathsf{EW}_{2,n})\right).$
- lacktriangle There exists a real PSD matrix $X \in M_2$ such that

$$x_{1,1} + x_{2,2} \le s_1, \ x_{2,2} \le s_2, \ x_{1,2} + x_{2,2} \le s_3, \ \text{and} \ x_{1,2} \le s_-$$

① If we define
$$q_1 := s_1^2 - 4s_-^2$$
 and $q_2 := (s_1 + 2s_3)^2 - 8s_3^2$ then:

$$\sqrt{q_1} \ge s_1 - 2s_2$$

$$\sqrt{q_2} \geq s_1 - 4s_2 + 2s_3$$

$$2\sqrt{q_1}+\sqrt{q_2}\geq s_1-2s_3$$
.

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_- := \sum_{\{j: \mu_i < 0\}} \mu_j$. Then the following are equivalent:

- $\vec{\mu} \in Conv\left(\sigma(\mathsf{EW}_{2,n})\right).$
- \bigcirc There exists a real PSD matrix $X \in M_2$ such that
- $x_{1,1} + x_{2,2} \le s_1, \ x_{2,2} \le s_2, \ x_{1,2} + x_{2,2} \le s_3, \ \text{and} \ x_1$
- ① If we define $q_1 := s_1^2 4s_-^2$ and $q_2 := (s_1 + 2s_3)^2 8s_3^2$ then
 - $91, 92 \leq 0$
 - $\sqrt{q_1} \ge s_1 2s_2$
 - $\sqrt{q_2} \ge s_1 4s_2 + 2s_3$
 - $2\sqrt{q_1} + \sqrt{q_2} \ge s_1 2s_3.$

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_- := \sum_{\{j: \mu_i < 0\}} \mu_j$. Then the following are equivalent:

- In there exists a real PSD matrix $X \in M_2$ such that $x_{1,1} + x_{2,2} \le s_1, \quad x_{2,2} \le s_2, \quad x_{1,2} + x_{2,2} \le s_3, \quad \text{and} \quad x_{1,2} \le s_-$
- ① If we define $q_1:=s_1^2-4s_-^2$ and $q_2:=(s_1+2s_3)^2-8s_3^2$ then: $q_1,q_2\geq 0$

$$\sqrt{q_1} \ge s_1 - 2s_2$$

$$\sqrt{q_2} \ge s_1 - 4s_2 + 2s_3$$

$$2\sqrt{a_1} + \sqrt{a_2} \ge s_1 - 2s_3.$$

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_- := \sum_{\{j: \mu_i < 0\}} \mu_j$. Then the following are equivalent:

- $\vec{\mu} \in Conv\left(\sigma(\mathsf{EW}_{2,n})\right).$
- **1** There exists a real PSD matrix $X \in M_2$ such that $x_{1,1} + x_{2,2} \le s_1$, $x_{2,2} \le s_2$, $x_{1,2} + x_{2,2} \le s_3$, and $x_{1,2} \le s_-$.
- If we define $q_1:=s_1^2-4s_-^2$ and $q_2:=(s_1+2s_3)^2-8s_3^2$ then: $q_1,q_2\geq 0$

$$\sqrt{q_1} \ge s_1 - 4s_2 + 2s_3$$

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_- := \sum_{\{j: \mu_i < 0\}} \mu_j$. Then the following are equivalent:

- $\vec{\mu} \in Conv\left(\sigma(\mathsf{EW}_{2,n})\right).$
- There exists a real PSD matrix $X \in M_2$ such that

$$x_{1,1} + x_{2,2} \le s_1$$
, $x_{2,2} \le s_2$, $x_{1,2} + x_{2,2} \le s_3$, and $x_{1,2} \le s_-$.

① If we define $q_1 := s_1^2 - 4s_-^2$ and $q_2 := (s_1 + 2s_3)^2 - 8s_3^2$ then:

$$q_1, q_2 \ge 0$$

$$\sqrt{q_1} \ge s_1 - 2s_2$$

$$\sqrt{q_2} \ge s_1 - 4s_2 + 2s_3$$

$$2\sqrt{q_1} + \sqrt{q_2} \ge s_1 - 2s_3.$$

- These inequalities are not sufficient, even if n=2
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are **not** sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are **not** sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are **not** sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

For example, $\vec{\mu} \in Conv\left(\sigma(\mathsf{DEW}_{3,3})\right)$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$(x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) \le s_{1}$$

$$(x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) \le s_{2}$$

$$(x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) \le s_{3}$$

$$(x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) \le s_{4}$$

$$(x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) \le s_{6}$$

$$(x_{3,3} - x_{1,2} - x_{1,3} - x_{2,3}) + (y_{3,3} - y_{1,2} - y_{1,3} - y_{2,3}) \le s_{6}$$

$$(-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) \le s_{6}$$

$$(-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) \le s_{6}$$

$$-x_{1,2} - y_{1,2} \le s_{9}$$

For example, $\vec{\mu} \in Conv\left(\sigma(\mathsf{DEW}_{3,3})\right)$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$(x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) \le s_1$$

$$(x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) \le s_2$$

$$(x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) \le s_3$$

$$(x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) \le s_4$$

$$(x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) \le s_5$$

$$(x_{3,3} - x_{1,2} - x_{1,3} - x_{2,3}) + (y_{3,3} - y_{1,2} - y_{1,3} - y_{2,3}) \le s_6$$

$$(-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) \le s_7$$

$$(-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) \le s_8$$

$$-x_{1,2} - y_{1,2} \le s_9$$

For example, $\vec{\mu} \in Conv\left(\sigma(\mathsf{DEW}_{3,3})\right)$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$(x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) \le s_1$$

$$(x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) \le s_2$$

$$(x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) \le s_3$$

$$(x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) \le s_4$$

$$(x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) \le s_5$$

$$(x_{3,3} - x_{1,2} - x_{1,3} - x_{2,3}) + (y_{3,3} - y_{1,2} - y_{1,3} - y_{2,3}) \le s_6$$

$$(-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) \le s_7$$

$$(-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) \le s_8$$

$$-x_{1,2} - y_{1,2} \le s_9$$

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv\left(\sigma(\mathsf{EW}_{m,n})\right) = Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv\left(\sigma(\mathsf{EW}_{m,n})\right) = Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ would settle a long-standing question about "absolutely separable" states
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv\left(\sigma(\mathsf{EW}_{m,n})\right) = Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv\left(\sigma(\mathsf{EW}_{m,n})\right) = Conv\left(\sigma(\mathsf{DEW}_{m,n})\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

Thank-you!

Thank-you!

(arXiv:1708.05901)