The Spectra of Entanglement Witnesses

Nathaniel Johnston and Everett Patterson
MountAllison
UNIVERSITY

Winter 2017 CMS Meeting
Waterloo, Ontario, Canada

December 11, 2017

Entanglement Witnesses

Definition

A Hermitian matrix $W \in M_{m} \otimes M_{n}$ is called an entanglement witness if

$$
(\langle a| \otimes\langle b|) W(|a\rangle \otimes|b\rangle) \geq 0 \quad \text { for all } \quad|a\rangle \in \mathbb{C}^{m},|b\rangle \in \mathbb{C}^{n}
$$

- Equivalently, $W=(I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_{m} \otimes M_{n}$ and positive linear map Φ.
- Useful because they can detect entanglement in quantum states.

Entanglement Witnesses

Definition

A Hermitian matrix $W \in M_{m} \otimes M_{n}$ is called an entanglement witness if

$$
(\langle a| \otimes\langle b|) W(|a\rangle \otimes|b\rangle) \geq 0 \quad \text { for all } \quad|a\rangle \in \mathbb{C}^{m},|b\rangle \in \mathbb{C}^{n} .
$$

- Equivalently, $W=(I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_{m} \otimes M_{n}$ and positive linear map Φ.
- Useful because they can detect entanglement in quantum states.

Entanglement Witnesses

Definition

A Hermitian matrix $W \in M_{m} \otimes M_{n}$ is called an entanglement witness if

$$
(\langle a| \otimes\langle b|) W(|a\rangle \otimes|b\rangle) \geq 0 \quad \text { for all } \quad|a\rangle \in \mathbb{C}^{m},|b\rangle \in \mathbb{C}^{n} .
$$

- Equivalently, $W=(I \otimes \Phi)(X)$ for some positive semidefinite $X \in M_{m} \otimes M_{n}$ and positive linear map Φ.
- Useful because they can detect entanglement in quantum states.

Entanglement Witnesses

In this talk, entanglement witnesses might be positive semidefinite.
This is not the usual convention, but it makes our results a bit easier to state.

- The "standard example" is the following matrix in $M_{2} \otimes M_{2}$:

- The above matrix has eigenvalues $1,1,1$, and -1 , so it is not positive semidefinite.

Entanglement Witnesses

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

- The "standard example" is the following matrix in $M_{2} \otimes M_{2}$:

- The above matrix has eigenvalues $1,1,1$, and -1 , so it is not positive semidefinite.

Entanglement Witnesses

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

- The "standard example" is the following matrix in $M_{2} \otimes M_{2}$:

$$
(I \otimes T)\left(\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

- The above matrix has eigenvalues $1,1,1$, and -1 , so it is not positive semidefinite.

Entanglement Witnesses

In this talk, entanglement witnesses might be positive semidefinite. This is not the usual convention, but it makes our results a bit easier to state.

- The "standard example" is the following matrix in $M_{2} \otimes M_{2}$:

$$
(I \otimes T)\left(\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

- The above matrix has eigenvalues $1,1,1$, and -1 , so it is not positive semidefinite.

Simple Spectral Inequalities

Question

What are the possible spectra of entanglement witnesses?

For example, can entanglement witnesses $W \in M_{2} \otimes M_{2}$ have more than one negative eigenvalue?

Simple Spectral Inequalities

Question

What are the possible spectra of entanglement witnesses?

For example, can entanglement witnesses $W \in M_{2} \otimes M_{2}$ have more than one negative eigenvalue?

Simple Spectral Inequalities

Theorem

If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then it has no more than $(m-1)(n-1)$ negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than $(m-1)(n-1)$.
- If $m=n=2$, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

Theorem

If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then it has no more than $(m-1)(n-1)$ negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than $(m-1)(n-1)$.
- If $m=n=2$, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

Theorem

If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then it has no more than $(m-1)(n-1)$ negative eigenvalues.

- Follows from the fact that entangled subspaces can have dimension no larger than $(m-1)(n-1)$.
- If $m=n=2$, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue more negative?
For example, does there exist an entanglement witness $W \in M_{2} \otimes M_{2}$ with eigenvalues $1,1,1, c$, where $c<-1$?

Theorem (J.-Kribs, 2010, likely known before that though)

If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then

$$
\lambda_{\min }(W) / \lambda_{\max }(W) \geq 1-\min \{m, n\}
$$

- Proof is straightforward.
- If $m=n=2$ and $\lambda_{\max }(W)=1$ then $\lambda_{\min }(W) \geq-1$

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue more negative?
For example, does there exist an entanglement witness
$W \in M_{2} \otimes M_{2}$ with eigenvalues $1,1,1, c$, where $c<-1$?
Theorem (J.-Kribs, 2010, likely known before that though)
If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then

$$
\lambda_{\min }(W) / \lambda_{\max }(W) \geq 1-\min \{m, n\}
$$

- Proof is straightforward.
- If $m=n=2$ and $\lambda_{\max }(W)=1$ then $\lambda_{\min }(W) \geq-1$

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue more negative?
For example, does there exist an entanglement witness
$W \in M_{2} \otimes M_{2}$ with eigenvalues $1,1,1, c$, where $c<-1$?
Theorem (J.-Kribs, 2010, likely known before that though)
If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then

$$
\lambda_{\min }(W) / \lambda_{\max }(W) \geq 1-\min \{m, n\}
$$

- Proof is straightforward.
- If $m=n=2$ and $\lambda_{\max }(W)=1$ then $\lambda_{\min }(W) \geq-1$.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue more negative?
For example, does there exist an entanglement witness
$W \in M_{2} \otimes M_{2}$ with eigenvalues $1,1,1, c$, where $c<-1$?
Theorem (J.-Kribs, 2010, likely known before that though)
If $W \in M_{m} \otimes M_{n}$ is an entanglement witness, then

$$
\lambda_{\min }(W) / \lambda_{\max }(W) \geq 1-\min \{m, n\}
$$

- Proof is straightforward.
- If $m=n=2$ and $\lambda_{\max }(W)=1$ then $\lambda_{\min }(W) \geq-1$.

Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...
Theorem (J.-Patterson)
There exists an entanglement witness in $M_{2} \otimes M_{2}$ with eigenvalues $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}$ if and only if the following inequalities hold:

Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_{2} \otimes M_{2}$ with eigenvalues $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}$ if and only if the following inequalities hold:

Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_{2} \otimes M_{2}$ with eigenvalues $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}$ if and only if the following inequalities hold:

- $\mu_{3} \geq 0$,
- $\mu_{4} \geq-\mu_{2}$, and
- $\mu_{4} \geq-\sqrt{\mu_{1} \mu_{3}}$.

Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_{2} \otimes M_{2}$ with eigenvalues $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}$ if and only if the following inequalities hold:

- $\mu_{3} \geq 0$,
- $\mu_{4} \geq-\mu_{2}$, and

Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...

Theorem (J.-Patterson)

There exists an entanglement witness in $M_{2} \otimes M_{2}$ with eigenvalues $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}$ if and only if the following inequalities hold:

- $\mu_{3} \geq 0$,
- $\mu_{4} \geq-\mu_{2}$, and
- $\mu_{4} \geq-\sqrt{\mu_{1} \mu_{3}}$.

Two-Qubit Entanglement Witnesses

We can visualize the set of possible spectra by scaling W so that $\operatorname{Tr}(W)=1$. Then $\mu_{4}=1-\mu_{1}-\mu_{2}-\mu_{3}$ and the (unsorted) $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ region looks like:

Two-Qubit Entanglement Witnesses

We can visualize the set of possible spectra by scaling W so that $\operatorname{Tr}(W)=1$. Then $\mu_{4}=1-\mu_{1}-\mu_{2}-\mu_{3}$ and the (unsorted) ($\mu_{1}, \mu_{2}, \mu_{3}$) region looks like:

Two-Qubit Entanglement Witnesses

Proof sketch:

- Every entanglement witness $W \in M_{2} \otimes M_{2}$ can be written in the form $W=X+(I \otimes T)(Y)$, where $X, Y \in M_{2} \otimes M_{2}$ are PSD
- If $Y=|v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

Two-Qubit Entanglement Witnesses

Proof sketch:

- Every entanglement witness $W \in M_{2} \otimes M_{2}$ can be written in the form $W=X+(I \otimes T)(Y)$, where $X, Y \in M_{2} \otimes M_{2}$ are PSD
- If $Y=|v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$
- Eigenvalues of W are no smaller than those of $(1 \otimes T)(Y)$. Done.

Two-Qubit Entanglement Witnesses

Proof sketch:

- Every entanglement witness $W \in M_{2} \otimes M_{2}$ can be written in the form $W=X+(I \otimes T)(Y)$, where $X, Y \in M_{2} \otimes M_{2}$ are PSD and Y has rank 1.
- If $Y=|v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$
- Eigenvalues of W are no smaller than those of $(1 \otimes T)(Y)$ Done.

Two-Qubit Entanglement Witnesses

Proof sketch:

- Every entanglement witness $W \in M_{2} \otimes M_{2}$ can be written in the form $W=X+(I \otimes T)(Y)$, where $X, Y \in M_{2} \otimes M_{2}$ are PSD and Y has rank 1.
- If $Y=|v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$ Done.

Two-Qubit Entanglement Witnesses

Proof sketch:

- Every entanglement witness $W \in M_{2} \otimes M_{2}$ can be written in the form $W=X+(I \otimes T)(Y)$, where $X, Y \in M_{2} \otimes M_{2}$ are PSD and Y has rank 1.
- If $Y=|v\rangle\langle v|$ is PSD with rank 1, eigenvalues of $(I \otimes T)(Y)$ are easy to compute in terms of the Schmidt coefficients of $|v\rangle$.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

Qubit-Qudit Entanglement Witnesses

Next, we consider entanglement witnesses $W \in M_{2} \otimes M_{n}$, where $n \geq 2$.

- This problem is much harder. Even when $n=3$, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv $\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)$).
- For example, $(4,2,1,-2) \in \sigma\left(E W_{2,2}\right)$, so $(4,2,1,-2)+(4,2,-2,1)=(8,4,-1,-1) \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2,2}\right)\right)$

Qubit-Qudit Entanglement Witnesses

Next, we consider entanglement witnesses $W \in M_{2} \otimes M_{n}$, where $n \geq 2$.

- This problem is much harder. Even when $n=3$, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)$)
- For example, $(4,2,1,-2) \in \sigma\left(\mathrm{EW}_{2,2}\right)$, so

Qubit-Qudit Entanglement Witnesses

Next, we consider entanglement witnesses $W \in M_{2} \otimes M_{n}$, where $n \geq 2$.

- This problem is much harder. Even when $n=3$, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)$).
- For example, $(4,2,1,-2) \in \sigma\left(\mathrm{EW}_{2,2}\right)$, so

Qubit-Qudit Entanglement Witnesses

Next, we consider entanglement witnesses $W \in M_{2} \otimes M_{n}$, where $n \geq 2$.

- This problem is much harder. Even when $n=3$, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)$).
- For example, $(4,2,1,-2) \in \sigma\left(\mathrm{EW}_{2,2}\right)$, so

$$
(4,2,1,-2)+(4,2,-2,1)=(8,4,-1,-1) \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2,2}\right)\right)
$$

Qubit-Qudit Entanglement Witnesses

Next, we consider entanglement witnesses $W \in M_{2} \otimes M_{n}$, where $n \geq 2$.

- This problem is much harder. Even when $n=3$, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)$).
- For example, $(4,2,1,-2) \in \sigma\left(\mathrm{EW}_{2,2}\right)$, so

$$
\begin{aligned}
(4,2,1,-2)+(4,2,-2,1)=(8,4,-1,-1) & \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2,2}\right)\right) \\
& \notin \sigma\left(\mathrm{EW}_{2,2}\right) .
\end{aligned}
$$

Qubit-Qudit Entanglement Witnesses

Theorem (J.-Patterson)
 Suppose $\vec{\mu} \in \mathbb{R}^{2 n}$. Define $s_{k}:=\sum_{j=k}^{2 n} \mu_{j}^{\downarrow}$ for $k=1,2,3$ and $s_{-}:=\sum_{\left\{j: \mu_{j}<0\right\}} \mu_{j}$. Then the following are equivalent: (0) $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2, n}\right)\right)$.

Qubit-Qudit Entanglement Witnesses

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2 n}$. Define $s_{k}:=\sum_{j=k}^{2 n} \mu_{j}^{\downarrow}$ for $k=1,2,3$ and $s_{-}:=\sum_{\left\{j: \mu_{j}<0\right\}} \mu_{j}$. Then the following are equivalent:
© $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2, n}\right)\right)$.

Qubit-Qudit Entanglement Witnesses

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2 n}$. Define $s_{k}:=\sum_{j=k}^{2 n} \mu_{j}^{\downarrow}$ for $k=1,2,3$ and $s_{-}:=\sum_{\left\{j: \mu_{j}<0\right\}} \mu_{j}$. Then the following are equivalent:
(0) $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2, n}\right)\right)$.
(C) There exists a real PSD matrix $X \in M_{2}$ such that
$x_{1,1}+x_{2,2} \leq s_{1}, \quad x_{2,2} \leq s_{2}, \quad x_{1,2}+x_{2,2} \leq s_{3}, \quad$ and $x_{1,2} \leq s_{-}$.
(1) If we define $q_{1}:=s_{1}^{2}-4 s^{2}$ and $q_{2}:=\left(s_{1}+2 s_{3}\right)^{2}-8 s_{3}^{2}$ then: $q_{1}, q_{2} \geq 0$

Qubit-Qudit Entanglement Witnesses

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2 n}$. Define $s_{k}:=\sum_{j=k}^{2 n} \mu_{j}^{\downarrow}$ for $k=1,2,3$ and $s_{-}:=\sum_{\left\{j: \mu_{j}<0\right\}} \mu_{j}$. Then the following are equivalent:
(0) $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2, n}\right)\right)$.
(b) There exists a real $P S D$ matrix $X \in M_{2}$ such that

$$
x_{1,1}+x_{2,2} \leq s_{1}, \quad x_{2,2} \leq s_{2}, \quad x_{1,2}+x_{2,2} \leq s_{3}, \quad \text { and } \quad x_{1,2} \leq s_{-} .
$$

(c) If we define q_{1} $=s_{1}^{2}-4 s_{-}^{2}$ and q_{2}
$q_{1}, q_{2} \geq 0$

Qubit-Qudit Entanglement Witnesses

Theorem (J.-Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2 n}$. Define $s_{k}:=\sum_{j=k}^{2 n} \mu_{j}^{\downarrow}$ for $k=1,2,3$ and $s_{-}:=\sum_{\left\{j: \mu_{j}<0\right\}} \mu_{j}$. Then the following are equivalent:
(0) $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{2, n}\right)\right)$.
(b) There exists a real PSD matrix $X \in M_{2}$ such that

$$
x_{1,1}+x_{2,2} \leq s_{1}, \quad x_{2,2} \leq s_{2}, \quad x_{1,2}+x_{2,2} \leq s_{3}, \quad \text { and } \quad x_{1,2} \leq s_{-} .
$$

(c) If we define $q_{1}:=s_{1}^{2}-4 s_{-}^{2}$ and $q_{2}:=\left(s_{1}+2 s_{3}\right)^{2}-8 s_{3}^{2}$ then:

$$
\begin{aligned}
q_{1}, q_{2} & \geq 0 \\
\sqrt{q_{1}} & \geq s_{1}-2 s_{2} \\
\sqrt{q_{2}} & \geq s_{1}-4 s_{2}+2 s_{3} \\
2 \sqrt{q_{1}}+\sqrt{q_{2}} & \geq s_{1}-2 s_{3} .
\end{aligned}
$$

Qubit-Qudit Entanglement Witnesses

Each of the inequalities described by part (c) of that theorem is a necessary condition that the spectra of entanglement witnesses must satisfy.

- These inequalities are not sufficient, even if $n=2$.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for

Qubit-Qudit Entanglement Witnesses

Each of the inequalities described by part (c) of that theorem is a necessary condition that the spectra of entanglement witnesses must satisfy.

- These inequalities are not sufficient, even if $n=2$.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for

Qubit-Qudit Entanglement Witnesses

Each of the inequalities described by part (c) of that theorem is a necessary condition that the spectra of entanglement witnesses must satisfy.

- These inequalities are not sufficient, even if $n=2$.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for

Qubit-Qudit Entanglement Witnesses

Each of the inequalities described by part (c) of that theorem is a necessary condition that the spectra of entanglement witnesses must satisfy.

- These inequalities are not sufficient, even if $n=2$.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for

Qubit-Qudit Entanglement Witnesses

Each of the inequalities described by part (c) of that theorem is a necessary condition that the spectra of entanglement witnesses must satisfy.

- These inequalities are not sufficient, even if $n=2$.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

Qubit-Qudit Entanglement Witnesses

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

Qubit-Qudit Entanglement Witnesses

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

Decomposable Entanglement Witnesses

When going to even higher dimensions ($M_{m} \otimes M_{n}$ with $m, n \geq 3$), we have to sacrifice even more.

- Our methods now only work for decomposable entanglement witnesses: those of the form $W=X+(I \otimes T)(Y)$, with X
and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set Conv ($\sigma(\mathrm{DEW}, \mathrm{n})$) (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

Decomposable Entanglement Witnesses

When going to even higher dimensions ($M_{m} \otimes M_{n}$ with $m, n \geq 3$), we have to sacrifice even more.

- Our methods now only work for decomposable entanglement witnesses: those of the form $W=X+(I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am)

Decomposable Entanglement Witnesses

When going to even higher dimensions ($M_{m} \otimes M_{n}$ with $m, n \geq 3$), we have to sacrifice even more.

- Our methods now only work for decomposable entanglement witnesses: those of the form $W=X+(I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set Conv $\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for 8:30am).

Decomposable Entanglement Witnesses

When going to even higher dimensions ($M_{m} \otimes M_{n}$ with $m, n \geq 3$), we have to sacrifice even more.

- Our methods now only work for decomposable entanglement witnesses: those of the form $W=X+(I \otimes T)(Y)$, with X and Y positive semidefinite.
- Not every entanglement witness is decomposable.
- We can characterize the set $\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$) (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for $8: 30 \mathrm{am}$).

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{3,3}\right)\right)$ if and only if there exist real PSD matrices $X, Y \in M_{3}$ such that...

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{3,3}\right)\right)$ if and only if there exist real PSD matrices $X, Y \in M_{3}$ such that...

$$
\begin{aligned}
\left(x_{1,1}+x_{2,2}+x_{3,3}\right)+\left(y_{1,1}+y_{2,2}+y_{3,3}\right) & \leq s_{1} \\
\left(x_{2,2}+x_{3,3}\right)+\left(y_{2,2}+y_{3,3}\right) & \leq s_{2} \\
\left(x_{2,2}+x_{3,3}-x_{1,2}\right)+\left(y_{2,2}+y_{3,3}-y_{1,2}\right) & \leq s_{3} \\
\left(x_{3,3}-x_{1,2}\right)+\left(y_{2,2}+y_{3,3}-y_{1,2}-y_{1,3}\right) & \leq s_{4} \\
\left(x_{3,3}-x_{1,2}-x_{1,3}\right)+\left(y_{3,3}-y_{1,2}-y_{1,3}\right) & \leq s_{5} \\
\left(x_{3,3}-x_{1,2}-x_{1,3}-x_{2,3}\right)+\left(y_{3,3}-y_{1,2}-y_{1,3}-y_{2,3}\right) & \leq s_{6} \\
\left(-x_{1,2}-x_{1,3}-x_{2,3}\right)+\left(-y_{1,2}-y_{1,3}-y_{2,3}\right) & \leq s_{7} \\
\left(-x_{1,2}-x_{1,3}\right)+\left(-y_{1,2}-y_{1,3}\right) & \leq s_{8} \\
-x_{1,2}-y_{1,2} & \leq s_{9}
\end{aligned}
$$

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in \operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{3,3}\right)\right)$ if and only if there exist real PSD matrices $X, Y \in M_{3}$ such that...

$$
\begin{aligned}
\left(x_{1,1}+x_{2,2}+x_{3,3}\right)+\left(y_{1,1}+y_{2,2}+y_{3,3}\right) & \leq s_{1} \\
\left(x_{2,2}+x_{3,3}\right)+\left(y_{2,2}+y_{3,3}\right) & \leq s_{2} \\
\left(x_{2,2}+x_{3,3}-x_{1,2}\right)+\left(y_{2,2}+y_{3,3}-y_{1,2}\right) & \leq s_{3} \\
\left(x_{3,3}-x_{1,2}\right)+\left(y_{2,2}+y_{3,3}-y_{1,2}-y_{1,3}\right) & \leq s_{4} \\
\left(x_{3,3}-x_{1,2}-x_{1,3}\right)+\left(y_{3,3}-y_{1,2}-y_{1,3}\right) & \leq s_{5} \\
\left(x_{3,3}-x_{1,2}-x_{1,3}-x_{2,3}\right)+\left(y_{3,3}-y_{1,2}-y_{1,3}-y_{2,3}\right) & \leq s_{6} \\
\left(-x_{1,2}-x_{1,3}-x_{2,3}\right)+\left(-y_{1,2}-y_{1,3}-y_{2,3}\right) & \leq s_{7} \\
\left(-x_{1,2}-x_{1,3}\right)+\left(-y_{1,2}-y_{1,3}\right) & \leq s_{8} \\
-x_{1,2}-y_{1,2} & \leq s_{9}
\end{aligned}
$$

Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable) entanglement witnesses when $m, n \geq 3$.

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not
$\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)=\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_{3} \otimes M_{3}$ with eigenvalues $(1,1,1,1,1,1,-1,-1, c)$ for some $c<-1$?

Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable) entanglement witnesses when $m, n \geq 3$.

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)=\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ would settle a
long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_{3} \otimes M_{3}$ with eigenvalues $(1,1,1,1,1,1,-1,-1, c)$ for some $c<-1$?

Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable) entanglement witnesses when $m, n \geq 3$.

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)=\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_{3} \otimes M_{3}$ with eigenvalues $(1,1,1,1,1,1,-1,-1, c)$ for some $c<-1$?

Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable) entanglement witnesses when $m, n \geq 3$.

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $\operatorname{Conv}\left(\sigma\left(\mathrm{EW}_{m, n}\right)\right)=\operatorname{Conv}\left(\sigma\left(\mathrm{DEW}_{m, n}\right)\right)$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_{3} \otimes M_{3}$ with eigenvalues $(1,1,1,1,1,1,-1,-1, c)$ for some $c<-1$?

Thank-you!

Thank-you!

