The Spectra Arising from Positive Linear Maps

Nathaniel Johnston and Everett Patterson

Workshop on Operator Systems in Quantum Information Guelph, Ontario, Canada

August 14, 2017

Positive Maps

Positive Maps Simple Spectral Inequalities

Definition

- For example, the transpose map is positive.
- A few others are known, but constructing them is hard.
- Useful because they can detect entanglement in quantum states.

Positive Maps

Positive Maps Simple Spectral Inequalities

Definition

- For example, the transpose map is positive.
- A few others are known, but constructing them is hard.
- Useful because they can detect entanglement in quantum states.

Positive Maps

Positive Maps Simple Spectral Inequalities

Definition

- For example, the transpose map is positive.
- A few others are known, but constructing them is hard.
- Useful because they can detect entanglement in quantum states.

Positive Maps

Positive Maps Simple Spectral Inequalities

Definition

- For example, the transpose map is positive.
- A few others are known, but constructing them is hard.
- Useful because they can detect entanglement in quantum states.

- A positive map Φ is not necessarily completely positive. That is, there might exist PSD $X \in M_m \otimes M_n$ such that $(I_m \otimes \Phi)(X)$ is not PSD.
 - The "standard example" is the transpose map $T: M_2 \rightarrow M_2$:

$$(I_2 \otimes T) \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A positive map Φ is not necessarily **completely positive**. That is, there might exist PSD $X \in M_m \otimes M_n$ such that $(I_m \otimes \Phi)(X)$ is not PSD.

• The "standard example" is the transpose map $T: M_2 \rightarrow M_2$:

$$(I_2 \otimes T) \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A positive map Φ is not necessarily **completely positive**. That is, there might exist PSD $X \in M_m \otimes M_n$ such that $(I_m \otimes \Phi)(X)$ is not PSD.

• The "standard example" is the transpose map $T: M_2 \rightarrow M_2$:

$$(I_2 \otimes T) \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A positive map Φ is not necessarily **completely positive**. That is, there might exist PSD $X \in M_m \otimes M_n$ such that $(I_m \otimes \Phi)(X)$ is not PSD.

• The "standard example" is the transpose map $T: M_2 \rightarrow M_2$:

$$(I_2 \otimes T) \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Positive Maps Simple Spectral Inequalities

Simple Spectral Inequalities

Question

What are the possible spectra of matrices of the form $(I \otimes \Phi)(X)$ when Φ is positive and X is PSD?

Equivalently, what are the possible spectra of **entanglement witnesses**?

That is, Hermitian matrices $W \in M_m \otimes M_n$ such that

 $(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b\rangle)\geq 0 \quad \text{for all} \quad |a\rangle\in \mathbb{C}^m, |b\rangle\in \mathbb{C}^n.$

Positive Maps Simple Spectral Inequalities

Simple Spectral Inequalities

Question

What are the possible spectra of matrices of the form $(I \otimes \Phi)(X)$ when Φ is positive and X is PSD?

Equivalently, what are the possible spectra of entanglement witnesses?

That is, Hermitian matrices $W \in M_m \otimes M_n$ such that

 $(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b\rangle)\geq 0 \quad \text{for all} \quad |a\rangle\in \mathbb{C}^m, |b\rangle\in \mathbb{C}^n.$

Positive Maps Simple Spectral Inequalities

Simple Spectral Inequalities

Question

What are the possible spectra of matrices of the form $(I \otimes \Phi)(X)$ when Φ is positive and X is PSD?

Equivalently, what are the possible spectra of **entanglement** witnesses?

That is, Hermitian matrices $W \in M_m \otimes M_n$ such that

 $(\langle a|\otimes \langle b|)W(|a\rangle\otimes |b
angle)\geq 0 \quad ext{for all} \quad |a
angle\in \mathbb{C}^m, |b
angle\in \mathbb{C}^n.$

Simple Spectral Inequalities

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Theorem

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Theorem

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Theorem

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

For example, can entanglement witnesses $W \in M_2 \otimes M_2$ have more than one negative eigenvalue?

Theorem

- Follows from the fact that entangled subspaces can have dimension no larger than (m-1)(n-1).
- If m = n = 2, then W can have no more than 1 negative eigenvalue.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, *c*, where c < -1?

Theorem (J.–Kribs, 2010)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

 $\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$

• Proof is straightforward.

• If m = n = 2 and $\lambda_{\max}(W) = 1$ then $\lambda_{\min}(W) \ge -1$.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, *c*, where c < -1?

Theorem (J.-Kribs, 2010)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

 $\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$

• Proof is straightforward.

• If m = n = 2 and $\lambda_{\max}(W) = 1$ then $\lambda_{\min}(W) \ge -1$.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, *c*, where c < -1?

Theorem (J.-Kribs, 2010)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

 $\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$

• Proof is straightforward.

• If m = n = 2 and $\lambda_{\max}(W) = 1$ then $\lambda_{\min}(W) \ge -1$.

Simple Spectral Inequalities

OK, could we make that one negative eigenvalue **more** negative? For example, does there exist an entanglement witness $W \in M_2 \otimes M_2$ with eigenvalues 1, 1, 1, *c*, where c < -1?

Theorem (J.–Kribs, 2010)

If $W \in M_m \otimes M_n$ is an entanglement witness, then

$$\lambda_{\min}(W)/\lambda_{\max}(W) \ge 1 - \min\{m, n\}.$$

• Proof is straightforward.

• If
$$m = n = 2$$
 and $\lambda_{\max}(W) = 1$ then $\lambda_{\min}(W) \ge -1$.

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

There exists an entanglement witness in $M_2 \otimes M_2$ with eigenvalues $\mu_1 \ge \mu_2 \ge \mu_3 \ge \mu_4$ if and only if the following inequalities hold: • $\mu_3 \ge 0$, • $\mu_4 \ge -\mu_2$, and • $\mu_4 \ge -\mu_2$, and

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

- $\mu_3 \geq 0$,
- $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}.$

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

- μ₃ ≥ 0,
- $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}.$

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

- μ₃ ≥ 0,
- $\mu_4 \geq -\mu_2$, and
- $\mu_4 \geq -\sqrt{\mu_1 \mu_3}$.

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

- μ₃ ≥ 0,
- $\mu_4 \geq -\mu_2$, and
- $\mu_4 \ge -\sqrt{\mu_1 \mu_3}.$

We can visualize the set of possible spectra by scaling W so that Tr(W) = 1. Then $\mu_4 = 1 - \mu_1 - \mu_2 - \mu_3$ and the (unsorted) (μ_1, μ_2, μ_3) region looks like:

Two-Qubit Entanglement Witnesses

We can visualize the set of possible spectra by scaling W so that Tr(W) = 1. Then $\mu_4 = 1 - \mu_1 - \mu_2 - \mu_3$ and the (unsorted) (μ_1, μ_2, μ_3) region looks like:

- Every entanglement witness W ∈ M₂ ⊗ M₂ can be written in the form W = X + (I ⊗ T)(Y), where X, Y ∈ M₂ ⊗ M₂ are PSD
- If Y = |v⟩⟨v| is PSD with rank 1, eigenvalues of (I ⊗ T)(Y) are easy to compute in terms of the Schmidt coefficients of |v⟩.
- Eigenvalues of W are no smaller than those of (I ⊗ T)(Y).
 Done.

- Every entanglement witness W ∈ M₂ ⊗ M₂ can be written in the form W = X + (I ⊗ T)(Y), where X, Y ∈ M₂ ⊗ M₂ are PSD
- If Y = |v⟩⟨v| is PSD with rank 1, eigenvalues of (I ⊗ T)(Y) are easy to compute in terms of the Schmidt coefficients of |v⟩.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness W ∈ M₂ ⊗ M₂ can be written in the form W = X + (I ⊗ T)(Y), where X, Y ∈ M₂ ⊗ M₂ are PSD and Y has rank 1.
- If Y = |v⟩⟨v| is PSD with rank 1, eigenvalues of (I ⊗ T)(Y) are easy to compute in terms of the Schmidt coefficients of |v⟩.
- Eigenvalues of W are no smaller than those of (I ⊗ T)(Y).
 Done.

- Every entanglement witness W ∈ M₂ ⊗ M₂ can be written in the form W = X + (I ⊗ T)(Y), where X, Y ∈ M₂ ⊗ M₂ are PSD and Y has rank 1.
- If Y = |v⟩⟨v| is PSD with rank 1, eigenvalues of (I ⊗ T)(Y) are easy to compute in terms of the Schmidt coefficients of |v⟩.
- Eigenvalues of W are no smaller than those of $(I \otimes T)(Y)$. Done.

- Every entanglement witness W ∈ M₂ ⊗ M₂ can be written in the form W = X + (I ⊗ T)(Y), where X, Y ∈ M₂ ⊗ M₂ are PSD and Y has rank 1.
- If Y = |v⟩⟨v| is PSD with rank 1, eigenvalues of (I ⊗ T)(Y) are easy to compute in terms of the Schmidt coefficients of |v⟩.
- Eigenvalues of W are no smaller than those of (I ⊗ T)(Y).
 Done.

Next, we consider entanglement witnesses $W \in M_2 \otimes M_n$, where $n \ge 2$.

- This problem is much harder. Even when *n* = 3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv (σ(EW_{m,n}))).
- For example, $(4,2,1,-2)\in\sigma(\mathsf{EW}_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(\mathsf{EW}_{2,2})) \\ \notin \sigma(\mathsf{EW}_{2,2}).$$

Next, we consider entanglement witnesses $W \in M_2 \otimes M_n$, where $n \ge 2$.

- This problem is much harder. Even when *n* = 3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv (σ(EW_{m,n}))).
- For example, $(4,2,1,-2)\in\sigma(\mathsf{EW}_{2,2})$, so

$$(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(\mathsf{EW}_{2,2})) \\ \notin \sigma(\mathsf{EW}_{2,2}).$$

Next, we consider entanglement witnesses $W \in M_2 \otimes M_n$, where $n \ge 2$.

- This problem is much harder. Even when *n* = 3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv (σ(EW_{m,n}))).
- For example, $(4,2,1,-2)\in\sigma(\mathsf{EW}_{2,2})$, so

 $(4,2,1,-2) + (4,2,-2,1) = (8,4,-1,-1) \in Conv (\sigma(\mathsf{EW}_{2,2}))$ $\not\in \sigma(\mathsf{EW}_{2,2}).$

Next, we consider entanglement witnesses $W \in M_2 \otimes M_n$, where $n \ge 2$.

- This problem is much harder. Even when *n* = 3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv (σ(EW_{m,n}))).
- For example, $(4,2,1,-2)\in\sigma(\mathsf{EW}_{2,2})$, so

$$(4, 2, 1, -2) + (4, 2, -2, 1) = (8, 4, -1, -1) \in Conv (\sigma(\mathsf{EW}_{2,2})) \\ \notin \sigma(\mathsf{EW}_{2,2}).$$

Next, we consider entanglement witnesses $W \in M_2 \otimes M_n$, where $n \ge 2$.

- This problem is much harder. Even when *n* = 3, a complete characterization is beyond us.
- To simplify things, we instead characterize the possible convex combinations of (unsorted) spectra of entanglement witnesses (we denote this set by Conv (σ(EW_{m,n}))).
- For example, $(4,2,1,-2)\in\sigma(\mathsf{EW}_{2,2})$, so

$$egin{aligned} (4,2,1,-2)+(4,2,-2,1)&=(8,4,-1,-1)\in \mathit{Conv}\left(\sigma(\mathsf{EW}_{2,2})
ight)\
otin \sigma(\mathsf{EW}_{2,2}). \end{aligned}$$

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{i=k}^{2n} \mu_i^{\downarrow}$ for k = 1, 2, 3 and

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_{-} := \sum_{\{j:\mu_i < 0\}} \mu_j$. Then the following are equivalent:

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{i=k}^{2n} \mu_i^{\downarrow}$ for k = 1, 2, 3 and $s_{-} := \sum_{\{j:\mu_i < 0\}} \mu_j$. Then the following are equivalent: (a) $\vec{\mu} \in Conv(\sigma(EW_{2,n}))$.

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{j=k}^{2n} \mu_j^{\downarrow}$ for k = 1, 2, 3 and $s_{-} := \sum_{\{j:\mu_i < 0\}} \mu_j$. Then the following are equivalent: (a) $\vec{\mu} \in Conv (\sigma(EW_{2,n}))$. (b) There exists a real PSD matrix $X \in M_2$ such that $x_{1,1} + x_{2,2} \le s_1$, $x_{2,2} \le s_2$, $x_{1,2} + x_{2,2} \le s_3$, and $x_{1,2} \le s_-$.

Theorem (J.–Patterson)

Suppose $\vec{\mu} \in \mathbb{R}^{2n}$. Define $s_k := \sum_{i=k}^{2n} \mu_i^{\downarrow}$ for k = 1, 2, 3 and $s_{-} := \sum_{\{j:\mu_i < 0\}} \mu_j$. Then the following are equivalent: (a) $\vec{\mu} \in Conv (\sigma(EW_{2,n}))$. (b) There exists a real PSD matrix $X \in M_2$ such that $x_{1,1} + x_{2,2} \leq s_1$, $x_{2,2} \leq s_2$, $x_{1,2} + x_{2,2} \leq s_3$, and $x_{1,2} \leq s_-$. (c) If we define $q_1 := s_1^2 - 4s_-^2$ and $q_2 := (s_1 + 2s_3)^2 - 8s_3^2$ then: $q_1, q_2 > 0$ $\sqrt{q_1} > s_1 - 2s_2$ $\sqrt{q_2} > s_1 - 4s_2 + 2s_3$ $2\sqrt{q_1} + \sqrt{q_2} > s_1 - 2s_3$.

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

- These inequalities are not sufficient, even if n = 2.
- However, they are considerably stronger than all previously-known necessary conditions.
- Exact necessary and sufficient conditions are likely unreasonable to hope for (even inverse eigenvalue problems for "simple" matrices like entrywise non-negative matrices are very hard).

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

We can visualize the necessary conditions of this theorem in the two-qubit case just like before, and it looks like:

Decomposable Entanglement Witnesses

- Our methods now only work for decomposable entanglement witnesses: those of the form W = X + (I ⊗ T)(Y), with X and Y positive semidefinite.
- Equivalently, positive maps of the form $\Phi = \Psi_1 + T \circ \Psi_2$, where Ψ_1, Ψ_2 are completely positive.
- We can characterize the set $Conv(\sigma(\text{DEW}_{m,n}))$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for a 25-minute talk).

Decomposable Entanglement Witnesses

- Our methods now only work for decomposable entanglement witnesses: those of the form W = X + (I ⊗ T)(Y), with X and Y positive semidefinite.
- Equivalently, positive maps of the form $\Phi = \Psi_1 + T \circ \Psi_2$, where Ψ_1, Ψ_2 are completely positive.
- We can characterize the set $Conv(\sigma(\text{DEW}_{m,n}))$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for a 25-minute talk).

Decomposable Entanglement Witnesses

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Equivalently, positive maps of the form $\Phi = \Psi_1 + T \circ \Psi_2$, where Ψ_1, Ψ_2 are completely positive.
- We can characterize the set $Conv(\sigma(\text{DEW}_{m,n}))$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for a 25-minute talk).

Decomposable Entanglement Witnesses

- Our methods now only work for decomposable entanglement witnesses: those of the form $W = X + (I \otimes T)(Y)$, with X and Y positive semidefinite.
- Equivalently, positive maps of the form $\Phi = \Psi_1 + T \circ \Psi_2$, where Ψ_1, Ψ_2 are completely positive.
- We can characterize the set $Conv(\sigma(\text{DEW}_{m,n}))$ (DEW stands for "decomposable entanglement witness") for all m, n (but the theorem is too ugly for a 25-minute talk).

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in Conv(\sigma(DEW_{3,3}))$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$(x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) \leq s_1 (x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) \leq s_2 (x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) \leq s_3 (x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) \leq s_4 (x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) \leq s_5 (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) \leq s_5 (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3} - y_{2,3}) \leq s_6 (-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) \leq s_7 (-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) \leq s_8 -x_{1,2} - y_{1,2} \leq s_9$$

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in Conv(\sigma(DEW_{3,3}))$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$\begin{aligned} (x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) &\leq s_1 \\ (x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) &\leq s_2 \\ (x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) &\leq s_3 \\ (x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_4 \\ (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_5 \\ (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_5 \\ (x_{3,3} - x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) &\leq s_6 \\ (-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) &\leq s_7 \\ (-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) &\leq s_8 \\ -x_{1,2} - y_{1,2} &\leq s_9 \end{aligned}$$

Decomposable Entanglement Witnesses

For example, $\vec{\mu} \in Conv(\sigma(DEW_{3,3}))$ if and only if there exist real PSD matrices $X, Y \in M_3$ such that...

$$\begin{aligned} (x_{1,1} + x_{2,2} + x_{3,3}) + (y_{1,1} + y_{2,2} + y_{3,3}) &\leq s_1 \\ (x_{2,2} + x_{3,3}) + (y_{2,2} + y_{3,3}) &\leq s_2 \\ (x_{2,2} + x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2}) &\leq s_3 \\ (x_{3,3} - x_{1,2}) + (y_{2,2} + y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_4 \\ (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_5 \\ (x_{3,3} - x_{1,2} - x_{1,3}) + (y_{3,3} - y_{1,2} - y_{1,3}) &\leq s_6 \\ (-x_{1,2} - x_{1,3} - x_{2,3}) + (-y_{1,2} - y_{1,3} - y_{2,3}) &\leq s_7 \\ (-x_{1,2} - x_{1,3}) + (-y_{1,2} - y_{1,3}) &\leq s_8 \\ -x_{1,2} - y_{1,2} &\leq s_9 \end{aligned}$$

Entanglement Witnesses in Higher Dimensions

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv(\sigma(EW_{m,n})) = Conv(\sigma(DEW_{m,n}))$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

Entanglement Witnesses in Higher Dimensions

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv(\sigma(EW_{m,n})) = Conv(\sigma(DEW_{m,n}))$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

Entanglement Witnesses in Higher Dimensions

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv(\sigma(EW_{m,n})) = Conv(\sigma(DEW_{m,n}))$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

Entanglement Witnesses in Higher Dimensions

- Can we find a spectrum that is attained by an entanglement witness but not a decomposable entanglement witness?
- Determining whether or not $Conv(\sigma(EW_{m,n})) = Conv(\sigma(DEW_{m,n}))$ would settle a long-standing question about "absolutely separable" states.
- Specific cases of the above question might be more tractable. For example, does there exist an entanglement witness in $M_3 \otimes M_3$ with eigenvalues (1, 1, 1, 1, 1, 1, -1, -1, c) for some c < -1?

 Mathematical Background
 Decomposable Entanglement Witnesses in General

 Small Entanglement Witnesses
 Entanglement Witnesses in General?

 Results/Questions in Higher Dimensions
 Thank-you!

Thank-you!

Thank-you!

(preprint coming to the arXiv soon)