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Positive Maps

Definition
A linear map Φ : Mn → Mn is called positive if Φ(X ) is
(Hermitian) positive semidefinite (PSD) whenever X is.

For example, the transpose map is positive.

A few others are known, but constructing them is hard.

Useful because they can detect entanglement in quantum
states.
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Positive Maps

A positive map Φ is not necessarily completely positive. That is,
there might exist PSD X ∈ Mm ⊗Mn such that (Im ⊗Φ)(X ) is not
PSD.

The “standard example” is the transpose map T : M2 → M2:

(I2 ⊗ T )



1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The above matrix has eigenvalues 1, 1, 1, and −1, so it is not
positive semidefinite.
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Simple Spectral Inequalities

Question
What are the possible spectra of matrices of the form (I ⊗ Φ)(X )
when Φ is positive and X is PSD?

Equivalently, what are the possible spectra of entanglement
witnesses?

That is, Hermitian matrices W ∈ Mm ⊗Mn such that

(〈a| ⊗ 〈b|)W (|a〉 ⊗ |b〉) ≥ 0 for all |a〉 ∈ Cm, |b〉 ∈ Cn.
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Simple Spectral Inequalities

For example, can entanglement witnesses W ∈ M2 ⊗M2 have more
than one negative eigenvalue?

Theorem
If W ∈ Mm ⊗Mn is an entanglement witness, then it has no more
than (m − 1)(n − 1) negative eigenvalues.

Follows from the fact that entangled subspaces can have
dimension no larger than (m − 1)(n − 1).

If m = n = 2, then W can have no more than 1 negative
eigenvalue.
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Simple Spectral Inequalities

OK, could we make that one negative eigenvalue more negative?
For example, does there exist an entanglement witness
W ∈ M2 ⊗M2 with eigenvalues 1, 1, 1, c , where c < −1?

Theorem (J.–Kribs, 2010)

If W ∈ Mm ⊗Mn is an entanglement witness, then

λmin(W )/λmax(W ) ≥ 1−min{m, n}.

Proof is straightforward.

If m = n = 2 and λmax(W ) = 1 then λmin(W ) ≥ −1.
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Two-Qubit Entanglement Witnesses

Can we do better? Well, in small dimensions...

Theorem (J.–Patterson)

There exists an entanglement witness in M2 ⊗M2 with eigenvalues
µ1 ≥ µ2 ≥ µ3 ≥ µ4 if and only if the following inequalities hold:

µ3 ≥ 0,
µ4 ≥ −µ2, and
µ4 ≥ −

√
µ1µ3.
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Two-Qubit Entanglement Witnesses

We can visualize the set of possible spectra by scaling W so that
Tr(W ) = 1. Then µ4 = 1− µ1 − µ2 − µ3 and the (unsorted)
(µ1, µ2, µ3) region looks like:
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Two-Qubit Entanglement Witnesses

Proof sketch:

Every entanglement witness W ∈ M2 ⊗M2 can be written in
the form W = X + (I ⊗ T )(Y ), where X ,Y ∈ M2 ⊗M2 are
PSD

If Y = |v〉〈v | is PSD with rank 1, eigenvalues of (I ⊗ T )(Y )
are easy to compute in terms of the Schmidt coefficients of |v〉.

Eigenvalues of W are no smaller than those of (I ⊗ T )(Y ).
Done.
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Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where
n ≥ 2.

This problem is much harder. Even when n = 3, a complete
characterization is beyond us.

To simplify things, we instead characterize the possible convex
combinations of (unsorted) spectra of entanglement witnesses
(we denote this set by Conv

(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Positive Maps



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit–Qudit Entanglement Witnesses

Qubit–Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where
n ≥ 2.

This problem is much harder. Even when n = 3, a complete
characterization is beyond us.

To simplify things, we instead characterize the possible convex
combinations of (unsorted) spectra of entanglement witnesses
(we denote this set by Conv

(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Positive Maps



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit–Qudit Entanglement Witnesses

Qubit–Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where
n ≥ 2.

This problem is much harder. Even when n = 3, a complete
characterization is beyond us.

To simplify things, we instead characterize the possible convex
combinations of (unsorted) spectra of entanglement witnesses
(we denote this set by Conv

(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Positive Maps



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit–Qudit Entanglement Witnesses

Qubit–Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where
n ≥ 2.

This problem is much harder. Even when n = 3, a complete
characterization is beyond us.

To simplify things, we instead characterize the possible convex
combinations of (unsorted) spectra of entanglement witnesses
(we denote this set by Conv

(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Positive Maps



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit–Qudit Entanglement Witnesses

Qubit–Qudit Entanglement Witnesses

Next, we consider entanglement witnesses W ∈ M2 ⊗Mn, where
n ≥ 2.

This problem is much harder. Even when n = 3, a complete
characterization is beyond us.

To simplify things, we instead characterize the possible convex
combinations of (unsorted) spectra of entanglement witnesses
(we denote this set by Conv

(
σ(EWm,n)

)
).

For example, (4, 2, 1,−2) ∈ σ(EW2,2), so

(4, 2, 1,−2) + (4, 2,−2, 1) = (8, 4,−1,−1) ∈ Conv
(
σ(EW2,2)

)
6∈ σ(EW2,2).

N. Johnston Spectra of Positive Maps



Mathematical Background
Small Entanglement Witnesses

Results/Questions in Higher Dimensions

Two-Qubit Entanglement Witnesses
Qubit–Qudit Entanglement Witnesses
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Theorem (J.–Patterson)

Suppose ~µ ∈ R2n. Define sk :=
∑2n

j=k µ
↓
j for k = 1, 2, 3 and

s− :=
∑
{j :µj<0} µj . Then the following are equivalent:

(a) ~µ ∈ Conv
(
σ(EW2,n)

)
.

(b) There exists a real PSD matrix X ∈ M2 such that

x1,1 + x2,2 ≤ s1, x2,2 ≤ s2, x1,2 + x2,2 ≤ s3, and x1,2 ≤ s−.

(c) If we define q1 := s2
1 − 4s2

− and q2 := (s1 + 2s3)2 − 8s2
3 then:

q1, q2 ≥ 0
√
q1 ≥ s1 − 2s2
√
q2 ≥ s1 − 4s2 + 2s3

2
√
q1 +

√
q2 ≥ s1 − 2s3.
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Each of the inequalities described by part (c) of that theorem is a
necessary condition that the spectra of entanglement witnesses
must satisfy.

These inequalities are not sufficient, even if n = 2.

However, they are considerably stronger than all
previously-known necessary conditions.

Exact necessary and sufficient conditions are likely
unreasonable to hope for (even inverse eigenvalue problems for
“simple” matrices like entrywise non-negative matrices are very
hard).
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We can visualize the necessary conditions of this theorem in the
two-qubit case just like before, and it looks like:
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Decomposable Entanglement Witnesses

When going to even higher dimensions (Mm ⊗Mn with m, n ≥ 3),
we have to sacrifice even more.

Our methods now only work for decomposable entanglement
witnesses: those of the form W = X + (I ⊗ T )(Y ), with X
and Y positive semidefinite.

Equivalently, positive maps of the form Φ = Ψ1 + T ◦Ψ2,
where Ψ1,Ψ2 are completely positive.

We can characterize the set Conv
(
σ(DEWm,n)

)
(DEW stands

for “decomposable entanglement witness”) for all m, n (but the
theorem is too ugly for a 25-minute talk).
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Decomposable Entanglement Witnesses

For example, ~µ ∈ Conv
(
σ(DEW3,3)

)
if and only if there exist real

PSD matrices X ,Y ∈ M3 such that...

(x1,1 + x2,2 + x3,3) + (y1,1 + y2,2 + y3,3) ≤ s1

(x2,2 + x3,3) + (y2,2 + y3,3) ≤ s2

(x2,2 + x3,3 − x1,2) + (y2,2 + y3,3 − y1,2) ≤ s3

(x3,3 − x1,2) + (y2,2 + y3,3 − y1,2 − y1,3) ≤ s4

(x3,3 − x1,2 − x1,3) + (y3,3 − y1,2 − y1,3) ≤ s5

(x3,3 − x1,2 − x1,3 − x2,3) + (y3,3 − y1,2 − y1,3 − y2,3) ≤ s6

(−x1,2 − x1,3 − x2,3) + (−y1,2 − y1,3 − y2,3) ≤ s7

(−x1,2 − x1,3) + (−y1,2 − y1,3) ≤ s8

−x1,2 − y1,2 ≤ s9
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Entanglement Witnesses in Higher Dimensions

We know comparatively little about (non-decomposable)
entanglement witnesses when m, n ≥ 3.

Can we find a spectrum that is attained by an entanglement
witness but not a decomposable entanglement witness?

Determining whether or not
Conv

(
σ(EWm,n)

)
= Conv

(
σ(DEWm,n)

)
would settle a

long-standing question about “absolutely separable” states.

Specific cases of the above question might be more tractable.
For example, does there exist an entanglement witness in
M3 ⊗M3 with eigenvalues (1, 1, 1, 1, 1, 1,−1,−1, c) for some
c < −1?
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