In quantum information theory, the well-known Schmidt decomposition theorem tells us that every pure quantum state
can be written in the form

where each
is a real scalar and the sets
and
form orthonormal bases of
.
The Schmidt decomposition theorem isn’t anything fancy: it is just the singular value decomposition in disguise (the
‘s are singular values of some matrix and the sets
and
are its left and right singular vectors). However, it tells us everything we could ever want to know about the entanglement of
: it is entangled if and only if it has more than one non-zero
, and in this case the question of “how much” entanglement is contained within
is answered by a certain function of the
‘s.
Well, we can find a similar decomposition of mixed quantum states. If
is a mixed quantum state then it can be written in its operator-Schmidt decomposition:

where each
is a real scalar and the sets
and
form orthonormal bases of Hermitian matrices in
(under the Hilbert–Schmidt inner product
).
Once again, we haven’t really done anything fancy: the operator-Schmidt decomposition is also just the singular value decomposition in disguise in almost the exact same way as the regular Schmidt decomposition. However, its relationship with entanglement of mixed states is much weaker (as we might expect from the fact that the singular value decomposition can be computed in polynomial time, but determining whether a mixed state is entangled or separable (i.e., not entangled) is expected to be hard [1]). In this post, we’ll investigate some cases when the operator-Schmidt decomposition does let us conclude that
is separable or entangled.
Proving a State is Entangled: The Realignment Criterion
One reasonably well-known method for proving that a mixed state is entangled is the realignment criterion [2,3]. What is slightly less well-known is that the realignment criterion can be phrased in terms of the coefficients
in the operator-Schmidt decomposition of
.
Theorem 1 (realignment criterion). Let
have operator-Schmidt decomposition

If
then
is entangled.
Proof. The idea is to construct a specific entanglement witness that detects the entanglement in
. In particular, the entanglement witness that we will use is
. To see that
is indeed an entanglement witness, we must show that
for all
and
. Well, some algebra shows that

so it suffices to show that
. To see this notice that

where the inequality is the Cauchy–Schwarz inequality and the equality comes from the fact that the sets
and
are orthonormal bases, so
(and similarly for
).
Now that we know that
is an entanglement witness, we must check that it detects the entanglement in
(that is, we want to show that
). This is straightforward to show by making use of the fact that the sets
and
are orthonormal:


It follows that
is entangled, which completes the proof.
A more popular formulation of the realignment criterion says that if we define the realignment map
by
and extending by linearity, and let
denote the trace norm (i.e., the sum of the singular values), then
implies that
is entangled. The equivalence of these two formulations of the realignment criterion comes from the fact that the singular values of
are exactly the coefficients
in its operator-Schmidt decomposition.
Proving a State is Entangled: Beyond the Realignment Criterion
We might naturally wonder whether we can prove that even more states are entangled based on their operator-Schmidt decomposition than those detected by the realignment criterion. The following theorem gives one sense in which the answer to this question is “no”: if we only look at “nice” functions of the coefficients
then the realignment criterion gives the best method of entanglement detection possible.
Theorem 2. Let
be a symmetric gauge function (i.e., a norm that is invariant under permutations and sign changes of the
entries of the input vector). If we can conclude that
is entangled based on the value of
then it must be the case that
.
Proof. Without loss of generality, we scale
so that
. We first prove two facts about
.
Claim 1:
for all mixed states
. This follows from the fact that
(which itself is kind of a pain to prove: it follows from the fact that the
Schatten norm of the realignment map
is
, but if anyone knows of a more direct and/or simpler way to prove this, I’d love to see it). If we assume without loss of generality that
then


as desired.
Claim 2: There exists a separable state
for which
equals any given value in the interval
. To see why this is the case, first notice that there exists a separable state
with
and
for all
: the state
is one such example. Similarly, there is a separable state with
and
for all
: the state
is one such example. Furthermore, it is straightforward to interpolate between these two extremes to find separable states (even product states) with
for all
and any value of
. For such states we have

which can take any value in the interval
as claimed.
By combining claims 1 and 2, we see that we could only ever use the value of
to conclude that
is entangled if
. However, in this case we have


which completes the proof.
Theorem 2 can be phrased naturally in terms of the other formulation of the realignment criterion as well: it says that there is no unitarily-invariant matrix norm
with the property that we can use the value of
to conclude that
is entangled, except in those cases where the trace norm (i.e., the realignment criterion) itself already tells us that
is entangled.
Nonetheless, we can certainly imagine using functions of the coefficients
that are not symmetric gauge functions. Alternatively, we could take into account some (hopefully easily-computable) properties of the matrices
and
. One such method for detecting entanglement that depends on the coefficients
and the trace of each
and
is as follows.
Theorem 3 [4,5]. Let
have operator-Schmidt decomposition

If

then
is entangled.
I won’t prove Theorem 3 here, but I will note that it is strictly stronger than the realignment criterion, which can be seen by showing that the left-hand side of Theorem 3 is at least as large as the left-hand side of Theorem 1. To show this, observe that

and

which is nonnegative.
Proving a State is Separable
Much like we can use the operator-Schmidt decomposition to sometimes prove that a state is entangled, we can also use it to sometimes prove that a state is separable. To this end, we will use the operator-Schmidt rank of
, which is the number of non-zero coefficients
in its operator-Schmidt decomposition. One trivial observation is as follows:
Proposition 4. If the operator-Schmidt rank of
is
then
is separable.
Proof. If the operator-Schmidt rank of
is
then we can write
for some
. Since
is positive semidefinite, it follows that either
and
are both positive semidefinite or both negative semidefinite. If they are both positive semidefinite, we are done. If they are both negative semidefinite then we can write
and then we are done.
Somewhat surprisingly, however, we can go further than this: it turns out that all states with operator-Schmidt rank
are also separable, as was shown in [6].
Theorem 5 [6]. If the operator-Schmidt rank of
is
then
is separable.
Proof. If
has operator-Schmidt rank
then it can be written in the form
for some
. Throughout this proof, we use the notation
, and so on.
Since
is positive semidefinite, so are each of its partial traces. Thus
and
are both positive semidefinite operators. It is then straightforward to verify that

What is important here is that we have found a rank-
tensor decomposition of
in which one of the terms is positive semidefinite. Now we define

and notice that
for some
(in order to do this, we actually need the partial traces of
to be nonsingular, but this is easily taken care of by standard continuity arguments, so we’ll sweep it under the rug). Furthermore,
is also positive semidefinite, and it is separable if and only if
is separable. Since
is positive semidefinite, we know that
for all eigenvalues
of
and
of
. If we absorb scalars between
and
so that
then this implies that
for all
. Thus
and
are both positive semidefinite. Furthermore, a straightforward calculation shows that

We now play a similar game as before: we define a new matrix

and notice that
for some
(similar to before, we note that there is a standard continuity argument that can be used to handle the fact that
and
might be singluar). The minimum eigenvalue of
is then
, which is non-negative as a result of
being positive semidefinite. It then follows that

Since each term in the above decomposition is positive semidefinite, it follows that
is separable, which implies that
is separable, which finally implies that
is separable.
In light of Theorem 6, it seems somewhat natural to ask how far we can push things: what values of the operator-Schmidt rank imply that a state is separable? Certainly we cannot expect all states with an operator-Schmidt rank of
to be separable, since every state in
has operator-Schmidt rank
or less, and there are entangled states in this space (more concretely, it’s easy to check that the maximally-entangled pure state has operator-Schmidt rank
).
This left the case of operator-Schmidt rank
open. Very recently, it was shown in [7] that a mixed state in
with operator-Schmidt rank
is indeed separable, yet there are entangled states with operator-Schmidt rank
in
.
References
- L. Gurvits. Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 10–19, 2003. E-print: arXiv:quant-ph/0303055
- K. Chen and L.-A. Wu. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput., 3:193–202, 2003. E-print: arXiv:quant-ph/0205017
- O. Rudolph. Some properties of the computable cross norm criterion for separability. Phys. Rev. A, 67:032312, 2003. E-print: E-print: arXiv:quant-ph/0212047
- C.-J. Zhang, Y.-S. Zhang, S. Zhang, and G.-C. Guo. Entanglement detection beyond the cross-norm or realignment criterion. Phys. Rev. A, 77:060301(R), 2008. E-print: arXiv:0709.3766 [quant-ph]
- O. Gittsovich, O. Gühne, P. Hyllus, and J. Eisert. Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A, 78:052319, 2008. E-print: arXiv:0803.0757 [quant-ph]
- D. Cariello. Separability for weak irreducible matrices. E-print: arXiv:1311.7275 [quant-ph]
- D. Cariello. Does symmetry imply PPT property?. E-print: arXiv:1405.3634 [math-ph]
Recent Comments